abundance of elements in Earth's crust

{{Short description|none}}

The abundance of elements in Earth's crust is shown in tabulated form with the estimated crustal abundance for each chemical element shown as mg/kg, or parts per million (ppm) by mass (10,000 ppm = 1%).

Reservoirs

The Earth's crust is one "reservoir" for measurements of abundance. A reservoir is any large body to be studied as unit, like the ocean, atmosphere, mantle or crust. Different reservoirs may have different relative amounts of each element due to different chemical or mechanical processes involved in the creation of the reservoir.{{Cite book |last=Albarède |first=Francis |url=https://www.cambridge.org/core/product/identifier/9780511807435/type/book |title=Geochemistry: An Introduction |date=2009-06-25 |publisher=Cambridge University Press |isbn=978-0-521-88079-4 |edition=2 |doi=10.1017/cbo9780511807435.005}}{{rp|18}}

Difficulties in measurement

Estimates of elemental abundance are difficult because (a) the composition of the upper and lower crust are quite different, and (b) the composition of the continental crust can vary drastically by locality.Kring, David A. [https://www.lpi.usra.edu/meetings/lpsc97/pdf/1084.PDF "Composition of Earth's continental crust as inferred from the compositions of impact melt sheets"]. 28th Annual Lunar and Planetary Science Conference, March 17–21, 1997, Houston, TX, p. 763. Vol. 28. 1997. The composition of the Earth changed after its formation due to loss of volatile compounds, melting and recrystalization, selective loss of some elements to the deep interior, and erosion by water.{{Cite journal |last1=Suess |first1=Hans E. |url=https://link.aps.org/doi/10.1103/RevModPhys.28.53 |title=Abundances of the Elements |last2=Urey |first2=Harold C. |journal=Reviews of Modern Physics |date=1956-01-01 |volume=28 |issue=1 |pages=53–74 |language=en |doi=10.1103/RevModPhys.28.53 |bibcode=1956RvMP...28...53S |issn=0034-6861|url-access=subscription }}{{rp|55}}

The lanthanides are especially difficult to measure accurately.Surendra P. Verma, E. Santoyo & Fernando Velasco-Tapia (2002) "Statistical Evaluation of Analytical Methods for the Determination of Rare-Earth Elements in Geological Materials and Implications for Detection Limits", International Geology Review, 44:4, 287–335, {{doi|10.2747/0020-6814.44.4.287}} (note geochemists refer to lanthanides as rare earth per ref.).

Graphs of abundance vs atomic number

File:Elemental abundances.svg

Graphs of abundance against atomic number can reveal patterns relating abundance to stellar nucleosynthesis and geochemistry.

The alternation of abundance between even and odd atomic number is known as the Oddo–Harkins rule. The rarest elements in the crust are not the heaviest, but are rather the siderophile elements (iron-loving) in the Goldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core; their abundance in meteoroids is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatile hydrogen selenide and hydrogen telluride.Anderson, Don L.; "Chemical Composition of the Mantle", Theory of the Earth, pp. 147–175 {{ISBN|0865421234}}

{{clear}}

List of abundance by element

This table gives the estimated abundance in parts per million by mass of elements in the continental crust; values of the less abundant elements may vary with location by several orders of magnitude."Abundance of Elements in the Earth's Crust and in the Sea", CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), sec. 14, pg. 17

class="wikitable" style="white-space:nowrap"

|+{{nobold|Colour indicates each element's Goldschmidt classification}}:

|style="background-color:#ffbb77"|Lithophile

|style="background-color:#ffe0f0"|Siderophile

|style="background-color:#bbffff"|Atmophile

|style="background-color:#fff888"|Chalcophile

|Trace

{{sort under}}

class="wikitable sortable sort-under mw-collapsible" style="text-align: right"

|+ {{nowrap|Abundance of chemical elements in Earth's (continental) crust}}

class="static-row-header"

! Z

! Element

! style="border-right:2px solid #b8b8b8" | Sym{{shy}}bol

! style="border-right:2px solid #b8b8b8" | Goldschmidt
classification

! data-sort-type=number style="border-right:2px solid #b8b8b8" | Abundance (ppm)

! colspan=2 data-sort-type=number | Production
tonnes/year2016 extraction per [http://minerals.usgs.gov/minerals/pubs/commodity/ Commodity Statistics and Information]. USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguous (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet [http://www.world-nuclear.org/info/Facts-and-Figures/World-Nuclear-Power-Reactors-and-Uranium-Requirements/] {{Webarchive|url=https://web.archive.org/web/20171001013037/https://minerals.usgs.gov/minerals/pubs/commodity/|date=2017-10-01}}. WNA.

style="background-color:#ffbb77"

| 8

| style="text-align:left;" | oxygen

| style="text-align:left;" | O

| style="text-align:center;" | Lithophile

| data-sort-value=461,000| 461,000 (46.1%)

| 10,335,000

{{Cite web |title=Oxygen Supply Chain – Executive Summary |url=https://www.epa.gov/system/files/documents/2023-03/Oxygen%20Supply%20Chain%20Profile.pdf |access-date=2024-05-23}}
style="background-color:#ffbb77"

| 14

| style="text-align:left;" | silicon

| style="text-align:left;" | Si

| style="text-align:center;" | Lithophile

| data-sort-value=282,000| 282,000 (28.2%)

|7,200,000

style="background-color:#ffbb77"

| 13

| style="text-align:left;" | aluminium

| style="text-align:left;" | Al

| style="text-align:center;" | Lithophile

| data-sort-value=82,300| 82,300 (8.23%)

|57,600,000

style="background-color:#ffe0f0"

| 26

| style="text-align:left;" | iron

| style="text-align:left;" | Fe

| style="text-align:center;" | Siderophile

| data-sort-value=56,300| 56,300 (5.63%)

|1,150,000,000

style="background-color:#ffbb77"

| 20

| style="text-align:left;" | calcium

| style="text-align:left;" | Ca

| style="text-align:center;" | Lithophile

| data-sort-value=41,500| 41,500 (4.15%)

| 18,000

style="background-color:#ffbb77"

| 11

| style="text-align:left;" | sodium

| style="text-align:left;" | Na

| style="text-align:center;" | Lithophile

| data-sort-value=23,600| 23,600 (2.36%)

|255,000,000

style="background-color:#ffbb77"

| 12

| style="text-align:left;" | magnesium

| style="text-align:left;" | Mg

| style="text-align:center;" | Lithophile

| data-sort-value=23,300| 23,300 (2.33%)

|27,700,000

style="background-color:#ffbb77"

| 19

| style="text-align:left;" | potassium

| style="text-align:left;" | K

| style="text-align:center;" | Lithophile

| data-sort-value=20,900| 20,900 (2.09%)

|53,200,000

{{Cite web |last=Canada |first=Natural Resources |date=2018-01-23 |title=Potash facts |url=https://natural-resources.canada.ca/our-natural-resources/minerals-mining/mining-data-statistics-and-analysis/minerals-metals-facts/potash-facts/20521 |access-date=2024-05-23 |website=natural-resources.canada.ca}}
style="background-color:#ffbb77"

| 22

| style="text-align:left;" | titanium

| style="text-align:left;" | Ti

| style="text-align:center;" | Lithophile

| data-sort-value=5,650| 5,650 (0.565%)

|6,600,000

style="background-color:#bbffff"

| 1

| style="text-align:left;" | hydrogen

| style="text-align:left;" | H

| style="text-align:center;" | Atmophile

| data-sort-value=1,400| 1,400 (0.14%)

| 75,000,000

{{Cite web |date=2024-05-29 |title=Hydrogen |url=https://www.irena.org/Energy-Transition/Technology/Hydrogen |access-date=2024-05-23 |website=www.irena.org |language=en}}
{{Cite web |title=Hydrogen Production |url=https://www.energy.gov/eere/fuelcells/hydrogen-production |access-date=2024-05-23}}
style="background-color:#ffbb77"

| 15

| style="text-align:left;" | phosphorus

| style="text-align:left;" | P

| style="text-align:center;" | Lithophile

| data-sort-value=1,050| 1,050 (0.105%)

| 226,000,000

{{Cite web |title=Phosphate rock production capacity worldwide |url=https://www.statista.com/statistics/1288972/global-phosphate-rock-production-capacity/ |access-date=2024-05-23 |website=Statista |language=en}}
style="background-color:#ffbb77"

| 25

| style="text-align:left;" | manganese

| style="text-align:left;" | Mn

| style="text-align:center;" | Lithophile

| data-sort-value=950| 950 (0.095%)

| 16,000,000

style="background-color:#ffbb77"

| 9

| style="text-align:left;" | fluorine

| style="text-align:left;" | F

| style="text-align:center;" | Lithophile

| data-sort-value=585| 585 (0.0585%)

| 17,000

style="background-color:#ffbb77"

| 56

| style="text-align:left;" | barium

| style="text-align:left;" | Ba

| style="text-align:center;" | Lithophile

| data-sort-value=425| 425 (0.0425%)

| 6,000,000

{{Cite web |title=Barium - Element information, properties and uses {{!}} Periodic Table |url=https://www.rsc.org/periodic-table/element/56/barium |access-date=2024-05-23 |website=www.rsc.org}}
style="background-color:#ffbb77"

| 38

| style="text-align:left;" | strontium

| style="text-align:left;" | Sr

| style="text-align:center;" | Lithophile

| data-sort-value=370| 370 (0.037%)

|350,000

style="background-color:#fff888"

| 16

| style="text-align:left;" | sulfur

| style="text-align:left;" | S

| style="text-align:center;" | Chalcophile

| data-sort-value=350| 350 (0.035%)

|69,300,000

style="background-color:#bbffff"

| 6

| style="text-align:left;" | carbon

| style="text-align:left;" | C

| style="text-align:center;" | Atmophile

| data-sort-value=200| 200 (0.02%)

| 9,700,000,000

style="background-color:#ffbb77"

| 40

| style="text-align:left;" | zirconium

| style="text-align:left;" | Zr

| style="text-align:center;" | Lithophile

| data-sort-value=165| 165 (0.0165%)

|1,460,000

style="background-color:#ffbb77"

| 17

| style="text-align:left;" | chlorine

| style="text-align:left;" | Cl

| style="text-align:center;" | Lithophile

| data-sort-value=145| 145 (0.0145%)

|71,250,000

{{Cite web |title=Chlorine global market volume 2030 |url=https://www.statista.com/statistics/1310477/chlorine-market-volume-worldwide/ |access-date=2024-05-23 |website=Statista |language=en}}
style="background-color:#ffbb77"

| 23

| style="text-align:left;" | vanadium

| style="text-align:left;" | V

| style="text-align:center;" | Lithophile

| data-sort-value=120| 120 (0.012%)

|76,000

style="background-color:#ffbb77"

| 24

| style="text-align:left;" | chromium

| style="text-align:left;" | Cr

| style="text-align:center;" | Lithophile

| data-sort-value=102| 102 (0.0102%)

|26,000,000

style="background-color:#ffbb77"

| 37

| style="text-align:left;" | rubidium

| style="text-align:left;" | Rb

| style="text-align:center;" | Lithophile

| data-sort-value=90| 90 (0.009%)

| 2

style="background-color:#ffe0f0"

| 28

| style="text-align:left;" | nickel

| style="text-align:left;" | Ni

| style="text-align:center;" | Siderophile

| data-sort-value=84| 84 (0.0084%)

|2,250,000

style="background-color:#fff888"

| 30

| style="text-align:left;" | zinc

| style="text-align:left;" | Zn

| style="text-align:center;" | Chalcophile

| data-sort-value=70| 70 (0.007%)

|11,900,000

style="background-color:#ffbb77"

| 58

| style="text-align:left;" | cerium

| style="text-align:left;" | Ce

| style="text-align:center;" | Lithophile

| data-sort-value=66.5| 66.5 (0.00665%)

| 24,000

{{Cite web |last=MMTA |title=Cerium |url=https://mmta.co.uk/metals/ce/ |access-date=2024-05-23 |website=MMTA |language=en-US}}
style="background-color:#fff888"

| 29

| style="text-align:left;" | copper

| style="text-align:left;" | Cu

| style="text-align:center;" | Chalcophile

| data-sort-value=60| 60 (0.006%)

|19,400,000

style="background-color:#ffbb77"

| 60

| style="text-align:left;" | neodymium

| style="text-align:left;" | Nd

| style="text-align:center;" | Lithophile

| data-sort-value=41.5| 41.5 (0.00415%)

| 7,000

{{Cite web |title=Neodymium - Elements Database |url=http://www.elementsdatabase.com/Neodymium-Nd-60-element/ |access-date=2024-05-23 |website=www.elementsdatabase.com}}
style="background-color:#ffbb77"

| 57

| style="text-align:left;" | lanthanum

| style="text-align:left;" | La

| style="text-align:center;" | Lithophile

| data-sort-value=39| 39 (0.0039%)

| 12,500

{{Cite web |last=MMTA |title=Lanthanum |url=https://mmta.co.uk/metals/la/ |access-date=2024-05-23 |website=MMTA |language=en-US}}
style="background-color:#ffbb77"

| 39

| style="text-align:left;" | yttrium

| style="text-align:left;" | Y

| style="text-align:center;" | Lithophile

| data-sort-value=33| 33 (0.0033%)

|6,000

style="background-color:#ffe0f0"

| 27

| style="text-align:left;" | cobalt

| style="text-align:left;" | Co

| style="text-align:center;" | Siderophile

| data-sort-value=25| 25 (0.0025%)

|123,000

style="background-color:#ffbb77"

| 21

| style="text-align:left;" | scandium

| style="text-align:left;" | Sc

| style="text-align:center;" | Lithophile

| data-sort-value=22| 22 (0.0022%)

| 14

{{Cite journal |title=Exploring global supply and demand of scandium oxide in 2030 |date=2023 |doi=10.1016/j.jclepro.2023.136673 |url=https://www.sciencedirect.com/science/article/abs/pii/S0959652623008314 |access-date=2024-05-23 |last1=Phoung |first1=Sinoun |last2=Williams |first2=Eric |last3=Gaustad |first3=Gabrielle |last4=Gupta |first4=Ajay |journal=Journal of Cleaner Production |volume=401 |bibcode=2023JCPro.40136673P |doi-access=free }}
style="background-color:#ffbb77"

| 3

| style="text-align:left;" | lithium

| style="text-align:left;" | Li

| style="text-align:center;" | Lithophile

| data-sort-value=20| 20 (0.002%)

|35,000

style="background-color:#ffbb77"

| 41

| style="text-align:left;" | niobium

| style="text-align:left;" | Nb

| style="text-align:center;" | Lithophile

| data-sort-value=20| 20 (0.002%)

|64,000

style="background-color:#bbffff"

| 7

| style="text-align:left;" | nitrogen

| style="text-align:left;" | N

| style="text-align:center;" | Atmophile

| data-sort-value=19| 19 (0.0019%)

|140,000,000

style="background-color:#fff888"

| 31

| style="text-align:left;" | gallium

| style="text-align:left;" | Ga

| style="text-align:center;" | Chalcophile

| data-sort-value=19| 19 (0.0019%)

| 315

style="background-color:#fff888"

| 82

| style="text-align:left;" | lead

| style="text-align:left;" | Pb

| style="text-align:center;" | Chalcophile

| data-sort-value=14| 14 (0.0014%)

|4,820,000

style="background-color:#ffbb77"

| 5

| style="text-align:left;" | boron

| style="text-align:left;" | B

| style="text-align:center;" | Lithophile

| data-sort-value=10| 10 (0.001%)

|9,400,000

style="background-color:#ffbb77"

| 90

| style="text-align:left;" | thorium

| style="text-align:left;" | Th

| style="text-align:center;" | Lithophile

| data-sort-value=9.6| 9.6 (0.00096%)

| 5,000

{{Cite web |last=Emsley |first=John |date=2010-09-01 |title=Thorium |url=https://edu.rsc.org/elements/thorium/2020027.article |access-date=2024-05-23 |website=RSC Education |language=en}}
style="background-color:#ffbb77"

| 59

| style="text-align:left;" | praseodymium

| style="text-align:left;" | Pr

| style="text-align:center;" | Lithophile

| data-sort-value=9.2| 9.2 (0.00092%)

| 2,500

{{Cite web |title=Praseodymium (Pr) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/pr.htm |access-date=2024-05-23 |website=www.lenntech.com}}
style="background-color:#ffbb77"

| 62

| style="text-align:left;" | samarium

| style="text-align:left;" | Sm

| style="text-align:center;" | Lithophile

| data-sort-value=7.05| 7.05 (0.000705%)

| 700

{{Cite web |last=MMTA |title=Samarium |url=https://mmta.co.uk/metals/sm/ |access-date=2024-05-23 |website=MMTA |language=en-US}}
style="background-color:#ffbb77"

| 64

| style="text-align:left;" | gadolinium

| style="text-align:left;" | Gd

| style="text-align:center;" | Lithophile

| data-sort-value=6.2| 6.2 (0.00062%)

| 400

{{Cite web |title=Gadolinium (Gd) |url=https://www.rwmmint.com/products/gadolinium |access-date=2024-05-23 |website=RWMM |language=en}}
style="background-color:#ffbb77"

| 66

| style="text-align:left;" | dysprosium

| style="text-align:left;" | Dy

| style="text-align:center;" | Lithophile

| data-sort-value=5.2| 5.2 (0.00052%)

| 0.2

{{Cite web |title=Dysprosium (Dy) |url=https://www.sciencedirect.com/science/article/pii/S0169136823001439|language=en}}
style="background-color:#ffbb77"

| 68

| style="text-align:left;" | erbium

| style="text-align:left;" | Er

| style="text-align:center;" | Lithophile

| data-sort-value=3.5| 3.5 (0.00035%)

| 500

{{Cite web |title=Erbium (Er) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/er.htm |access-date=2024-05-23 |website=www.lenntech.com}}
style="background-color:#bbffff"

|18

| style="text-align:left;" | argon

| style="text-align:left;" |Ar

| style="text-align:center;" | Atmophile

| data-sort-value=3.5|3.5 (0.00035%)

|

style="background-color:#ffbb77"

| 70

| style="text-align:left;" | ytterbium

| style="text-align:left;" | Yb

| style="text-align:center;" | Lithophile

| data-sort-value=3.2| 3.2 (0.00032%)

|

style="background-color:#ffbb77"

| 72

| style="text-align:left;" | hafnium

| style="text-align:left;" | Hf

| style="text-align:center;" | Lithophile

| data-sort-value=3.0| 3.0 (0.0003%)

| 35

{{cite web|title=Hafnium (Hf)|url=https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-zirconium-hafnium.pdf}}
style="background-color:#ffbb77"

| 55

| style="text-align:left;" | caesium

| style="text-align:left;" | Cs

| style="text-align:center;" | Lithophile

| data-sort-value=3.0| 3.0 (0.0003%)

|

style="background-color:#ffbb77"

| 4

| style="text-align:left;" | beryllium

| style="text-align:left;" | Be

| style="text-align:center;" | Lithophile

| data-sort-value=2.8| 2.8 (0.00028%)

|220

style="background-color:#ffbb77"

| 92

| style="text-align:left;" | uranium

| style="text-align:left;" | U

| style="text-align:center;" | Lithophile

| data-sort-value=2.7| 2.7 (0.00027%)

|74,119

style="background-color:#ffbb77"

| 35

| style="text-align:left;" | bromine

| style="text-align:left;" | Br

| style="text-align:center;" | Lithophile

| data-sort-value=2.4| 2.4 (0.00024%)

|391,000

style="background-color:#fff888"

| 50

| style="text-align:left;" | tin

| style="text-align:left;" | Sn

| style="text-align:center;" | Chalcophile

| data-sort-value=2.3| 2.3 (0.00023%)

|280,000

style="background-color:#ffbb77"

| 73

| style="text-align:left;" | tantalum

| style="text-align:left;" | Ta

| style="text-align:center;" | Lithophile

| data-sort-value=2.0| 2.0 (0.0002%)

|1,100

style="background-color:#ffbb77"

| 63

| style="text-align:left;" | europium

| style="text-align:left;" | Eu

| style="text-align:center;" | Lithophile

| data-sort-value=2.0| 2.0 (0.0002%)

| 35.8

{{cite web|title=Europium (Eu)|url=https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-rare-earths.pdf}}
style="background-color:#fff888"

| 33

| style="text-align:left;" | arsenic

| style="text-align:left;" | As

| style="text-align:center;" | Chalcophile

| data-sort-value=1.8| 1.8 (0.00018%)

|36,500

style="background-color:#fff888"

| 32

| style="text-align:left;" | germanium

| style="text-align:left;" | Ge

| style="text-align:center;" | Chalcophile

| data-sort-value=1.5| 1.5 (0.00015%)

|155

style="background-color:#ffbb77"

| 67

| style="text-align:left;" | holmium

| style="text-align:left;" | Ho

| style="text-align:center;" | Lithophile

| data-sort-value=1.3| 1.3 (0.00013%)

|

style="background-color:#ffe0f0"

| 74

| style="text-align:left;" | tungsten

| style="text-align:left;" | W

| style="text-align:center;" | Siderophile

| data-sort-value=1.25| 1.25 (0.000125%)

|86,400

style="background-color:#ffe0f0"

| 42

| style="text-align:left;" | molybdenum

| style="text-align:left;" | Mo

| style="text-align:center;" | Siderophile

| data-sort-value=1.2| 1.2 (0.00012%)

|227,000

style="background-color:#ffbb77"

| 65

| style="text-align:left;" | terbium

| style="text-align:left;" | Tb

| style="text-align:center;" | Lithophile

| data-sort-value=1.2| 1.2 (0.00012%)

|

style="background-color:#fff888"

| 81

| style="text-align:left;" | thallium

| style="text-align:left;" | Tl

| style="text-align:center;" | Chalcophile

| data-sort-value=0.85| 0.85 (8.5{{e

5}}%)

| 10

style="background-color:#ffbb77"

|71

| style="text-align:left;" | lutetium

| style="text-align:left;" |Lu

| style="text-align:center;" | Lithophile

| data-sort-value=0.8| 0.8 (8{{e

5}}%)

|

style="background-color:#ffbb77"

| 69

| style="text-align:left;" | thulium

| style="text-align:left;" | Tm

| style="text-align:center;" | Lithophile

| data-sort-value=0.52| 0.52 (5.2{{e

5}}%)

|

style="background-color:#ffbb77"

| 53

| style="text-align:left;" | iodine

| style="text-align:left;" | I

| style="text-align:center;" | Lithophile

| data-sort-value=0.45| 0.45 (4.5{{e

5}}%)

|31,600

style="background-color:#fff888"

| 49

| style="text-align:left;" | indium

| style="text-align:left;" | In

| style="text-align:center;" | Chalcophile

| data-sort-value=0.25| 0.25 (2.5{{e

5}}%)

|655

style="background-color:#fff888"

| 51

| style="text-align:left;" | antimony

| style="text-align:left;" | Sb

| style="text-align:center;" | Chalcophile

| data-sort-value=0.2| 0.2 (2{{e

5}}%)

|130,000

style="background-color:#fff888"

| 48

| style="text-align:left;" | cadmium

| style="text-align:left;" | Cd

| style="text-align:center;" | Chalcophile

| data-sort-value=0.15| 0.15 (1.5{{e

5}}%)

| 23,000

style="background-color:#fff888"

| 80

| style="text-align:left;" | mercury

| style="text-align:left;" | Hg

| style="text-align:center;" | Chalcophile

| data-sort-value=0.085| 0.085 (8.5{{e

6}}%)

|4,500

style="background-color:#fff888"

| 47

| style="text-align:left;" | silver

| style="text-align:left;" | Ag

| style="text-align:center;" | Chalcophile

| data-sort-value=0.075| 0.075 (7.5{{e

6}}%)

|27,000

style="background-color:#fff888"

| 34

| style="text-align:left;" | selenium

| style="text-align:left;" | Se

| style="text-align:center;" | Chalcophile

| data-sort-value=0.05| 0.05 (5{{e

6}}%)

|2,200

style="background-color:#ffe0f0"

| 46

| style="text-align:left;" | palladium

| style="text-align:left;" | Pd

| style="text-align:center;" | Siderophile

| data-sort-value=0.015| 0.015 (1.5{{e

6}}%)

| 208

style="background-color:#fff888"

| 83

| style="text-align:left;" | bismuth

| style="text-align:left;" | Bi

| style="text-align:center;" | Chalcophile

| data-sort-value=0.0085| 0.0085 (8.5{{e

7}}%)

|10,200

style="background-color:#bbffff"

|2

| style="text-align:left;" | helium

| style="text-align:left;" |He

| style="text-align:center;" | Atmophile

| data-sort-value=0.008|0.008 (8{{e

7}}%)

|

style="background-color:#bbffff"

|10

| style="text-align:left;" | neon

| style="text-align:left;" |Ne

| style="text-align:center;" | Atmophile

| data-sort-value=0.005|0.005 (5{{e

7}}%)

|

style="background-color:#ffe0f0"

| 78

| style="text-align:left;" | platinum

| style="text-align:left;" | Pt

| style="text-align:center;" | Siderophile

| data-sort-value=0.005| 0.005 (5{{e

7}}%)

|172

style="background-color:#ffe0f0"

| 79

| style="text-align:left;" | gold

| style="text-align:left;" | Au

| style="text-align:center;" | Siderophile

| data-sort-value=0.004| 0.004 (4{{e

7}}%)

|3,100

style="background-color:#ffe0f0"

| 76

| style="text-align:left;" | osmium

| style="text-align:left;" | Os

| style="text-align:center;" | Siderophile

| data-sort-value=0.0015| 0.0015 (1.5{{e

7}}%)

|

style="background-color:#fff888"

| 52

| style="text-align:left;" | tellurium

| style="text-align:left;" | Te

| style="text-align:center;" | Chalcophile

| data-sort-value=0.001| 0.001 (1{{e

7}}%)

|2,200

style="background-color:#ffe0f0"

| 44

| style="text-align:left;" | ruthenium

| style="text-align:left;" | Ru

| style="text-align:center;" | Siderophile

| data-sort-value=0.001| 0.001 (1{{e

7}}%)

|

style="background-color:#ffe0f0"

| 77

| style="text-align:left;" | iridium

| style="text-align:left;" | Ir

| style="text-align:center;" | Siderophile

| data-sort-value=0.001| 0.001 (1{{e

7}}%)

|

style="background-color:#ffe0f0"

| 45

| style="text-align:left;" | rhodium

| style="text-align:left;" | Rh

| style="text-align:center;" | Siderophile

| data-sort-value=0.001| 0.001 (1{{e

7}}%)

|

style="background-color:#ffe0f0"

| 75

| style="text-align:left;" | rhenium

| style="text-align:left;" | Re

| style="text-align:center;" | Siderophile

| data-sort-value=0.0007| 0.0007 (7{{e

8}}%)

| 47.2

style="background-color:#bbffff"

|36

| style="text-align:left;" | krypton

| style="text-align:left;" |Kr

| style="text-align:center;" | Atmophile

| data-sort-value=0.0001|0.0001 (1{{e

8}}%)

|

style="background-color:#bbffff"

|54

| style="text-align:left;" | xenon

| style="text-align:left;" |Xe

| style="text-align:center;" | Atmophile

| data-sort-value=3e-5|3{{e

5}} (3{{e
9}}%)

|

91

| style="text-align:left;" | protactinium

| style="text-align:left;" |Pa

| style="text-align:center;" | trace

| data-sort-value=1.4e-6|1.4{{e

6}} (1.4{{e
10}}%)

|

88

| style="text-align:left;" | radium

| style="text-align:left;" |Ra

| style="text-align:center;" | trace

| data-sort-value=9e-7|9{{e

7}} (9{{e
11}}%)

|

89

| style="text-align:left;" | actinium

| style="text-align:left;" |Ac

| style="text-align:center;" | trace

| data-sort-value=5.5e-10|5.5{{e

10}} (6{{e
14}}%)

|

84

| style="text-align:left;" | polonium

| style="text-align:left;" |Po

| style="text-align:center;" | trace

| data-sort-value=2e-10|2{{e

10}} (2{{e
14}}%)

|

86

| style="text-align:left;" | radon

| style="text-align:left;" |Rn

| style="text-align:center;" | trace

| data-sort-value=4e-13|4{{e

13}} (4{{e
17}}%)

|

43

| style="text-align:left;" | technetium

| style="text-align:left;" |Tc

| style="text-align:center;" | trace

| data-sort-value=0|

|

61

| style="text-align:left;" | promethium

| style="text-align:left;" |Pm

| style="text-align:center;" | trace

| data-sort-value=0|

|

85

| style="text-align:left;" | astatine

| style="text-align:left;" |At

| style="text-align:center;" | trace

| data-sort-value=0|

|

87

| style="text-align:left;" | francium

| style="text-align:left;" |Fr

| style="text-align:center;" | trace

| data-sort-value=0|

|

94

| style="text-align:left;" | plutonium

| style="text-align:left;" |Pu

| style="text-align:center;" | trace

| data-sort-value=0|

|

93

| style="text-align:left;" | neptunium

| style="text-align:left;" |Np

| style="text-align:center;" | trace

| data-sort-value=0|

|

See also

  • {{annotated link| Abundances of the elements (data page)}}
  • {{annotated link| Atmospheric chemistry}}
  • {{annotated link| Clarke number}}
  • {{annotated link| List of chemical elements}}
  • {{annotated link| Oklo phenomenon}}
  • {{annotated link| Primordial nuclide}}

References

{{Reflist}}

Further reading

  • {{Cite journal |last=Fleischer |first=Michael |date=September 1954 |title=The abundance and distribution of the chemical elements in the earth's crust |url=https://pubs.acs.org/doi/abs/10.1021/ed031p446 |journal=Journal of Chemical Education |language=en |volume=31 |issue=9 |pages=446 |doi=10.1021/ed031p446 |bibcode=1954JChEd..31..446F |issn=0021-9584|quote=Examines the abundance and distribution of the chemical elements in the earth's crust, as well as the figures and methods that have contributed to this knowledge.|url-access=subscription }}