abundance of elements in Earth's crust
{{Short description|none}}
The abundance of elements in Earth's crust is shown in tabulated form with the estimated crustal abundance for each chemical element shown as mg/kg, or parts per million (ppm) by mass (10,000 ppm = 1%).
Reservoirs
The Earth's crust is one "reservoir" for measurements of abundance. A reservoir is any large body to be studied as unit, like the ocean, atmosphere, mantle or crust. Different reservoirs may have different relative amounts of each element due to different chemical or mechanical processes involved in the creation of the reservoir.{{Cite book |last=Albarède |first=Francis |url=https://www.cambridge.org/core/product/identifier/9780511807435/type/book |title=Geochemistry: An Introduction |date=2009-06-25 |publisher=Cambridge University Press |isbn=978-0-521-88079-4 |edition=2 |doi=10.1017/cbo9780511807435.005}}{{rp|18}}
Difficulties in measurement
Estimates of elemental abundance are difficult because (a) the composition of the upper and lower crust are quite different, and (b) the composition of the continental crust can vary drastically by locality.Kring, David A. [https://www.lpi.usra.edu/meetings/lpsc97/pdf/1084.PDF "Composition of Earth's continental crust as inferred from the compositions of impact melt sheets"]. 28th Annual Lunar and Planetary Science Conference, March 17–21, 1997, Houston, TX, p. 763. Vol. 28. 1997. The composition of the Earth changed after its formation due to loss of volatile compounds, melting and recrystalization, selective loss of some elements to the deep interior, and erosion by water.{{Cite journal |last1=Suess |first1=Hans E. |url=https://link.aps.org/doi/10.1103/RevModPhys.28.53 |title=Abundances of the Elements |last2=Urey |first2=Harold C. |journal=Reviews of Modern Physics |date=1956-01-01 |volume=28 |issue=1 |pages=53–74 |language=en |doi=10.1103/RevModPhys.28.53 |bibcode=1956RvMP...28...53S |issn=0034-6861|url-access=subscription }}{{rp|55}}
The lanthanides are especially difficult to measure accurately.Surendra P. Verma, E. Santoyo & Fernando Velasco-Tapia (2002) "Statistical Evaluation of Analytical Methods for the Determination of Rare-Earth Elements in Geological Materials and Implications for Detection Limits", International Geology Review, 44:4, 287–335, {{doi|10.2747/0020-6814.44.4.287}} (note geochemists refer to lanthanides as rare earth per ref.).
Graphs of abundance vs atomic number
Graphs of abundance against atomic number can reveal patterns relating abundance to stellar nucleosynthesis and geochemistry.
The alternation of abundance between even and odd atomic number is known as the Oddo–Harkins rule. The rarest elements in the crust are not the heaviest, but are rather the siderophile elements (iron-loving) in the Goldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core; their abundance in meteoroids is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatile hydrogen selenide and hydrogen telluride.Anderson, Don L.; "Chemical Composition of the Mantle", Theory of the Earth, pp. 147–175 {{ISBN|0865421234}}
{{clear}}
List of abundance by element
This table gives the estimated abundance in parts per million by mass of elements in the continental crust; values of the less abundant elements may vary with location by several orders of magnitude."Abundance of Elements in the Earth's Crust and in the Sea", CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), sec. 14, pg. 17
class="wikitable" style="white-space:nowrap"
|+{{nobold|Colour indicates each element's Goldschmidt classification}}: |style="background-color:#ffbb77"|Lithophile |style="background-color:#ffe0f0"|Siderophile |style="background-color:#bbffff"|Atmophile |style="background-color:#fff888"|Chalcophile |Trace |
{{sort under}}
class="wikitable sortable sort-under mw-collapsible" style="text-align: right"
|+ {{nowrap|Abundance of chemical elements in Earth's (continental) crust}} | |
class="static-row-header"
! Z ! Element ! style="border-right:2px solid #b8b8b8" | Sym{{shy}}bol ! style="border-right:2px solid #b8b8b8" | Goldschmidt ! data-sort-type=number style="border-right:2px solid #b8b8b8" | Abundance (ppm) ! colspan=2 data-sort-type=number | Production | |
style="background-color:#ffbb77"
| 8 | style="text-align:left;" | oxygen | style="text-align:left;" | O | style="text-align:center;" | Lithophile | data-sort-value=461,000| 461,000 (46.1%) | 10,335,000 | {{Cite web |title=Oxygen Supply Chain – Executive Summary |url=https://www.epa.gov/system/files/documents/2023-03/Oxygen%20Supply%20Chain%20Profile.pdf |access-date=2024-05-23}} |
style="background-color:#ffbb77"
| 14 | style="text-align:left;" | silicon | style="text-align:left;" | Si | style="text-align:center;" | Lithophile | data-sort-value=282,000| 282,000 (28.2%) |7,200,000 | |
style="background-color:#ffbb77"
| 13 | style="text-align:left;" | aluminium | style="text-align:left;" | Al | style="text-align:center;" | Lithophile | data-sort-value=82,300| 82,300 (8.23%) |57,600,000 | |
style="background-color:#ffe0f0"
| 26 | style="text-align:left;" | iron | style="text-align:left;" | Fe | style="text-align:center;" | Siderophile | data-sort-value=56,300| 56,300 (5.63%) |1,150,000,000 | |
style="background-color:#ffbb77"
| 20 | style="text-align:left;" | calcium | style="text-align:left;" | Ca | style="text-align:center;" | Lithophile | data-sort-value=41,500| 41,500 (4.15%) | 18,000 | |
style="background-color:#ffbb77"
| 11 | style="text-align:left;" | sodium | style="text-align:left;" | Na | style="text-align:center;" | Lithophile | data-sort-value=23,600| 23,600 (2.36%) |255,000,000 | |
style="background-color:#ffbb77"
| 12 | style="text-align:left;" | magnesium | style="text-align:left;" | Mg | style="text-align:center;" | Lithophile | data-sort-value=23,300| 23,300 (2.33%) |27,700,000 | |
style="background-color:#ffbb77"
| 19 | style="text-align:left;" | potassium | style="text-align:left;" | K | style="text-align:center;" | Lithophile | data-sort-value=20,900| 20,900 (2.09%) |53,200,000 | {{Cite web |last=Canada |first=Natural Resources |date=2018-01-23 |title=Potash facts |url=https://natural-resources.canada.ca/our-natural-resources/minerals-mining/mining-data-statistics-and-analysis/minerals-metals-facts/potash-facts/20521 |access-date=2024-05-23 |website=natural-resources.canada.ca}} |
style="background-color:#ffbb77"
| 22 | style="text-align:left;" | titanium | style="text-align:left;" | Ti | style="text-align:center;" | Lithophile | data-sort-value=5,650| 5,650 (0.565%) |6,600,000 | |
style="background-color:#bbffff"
| 1 | style="text-align:left;" | hydrogen | style="text-align:left;" | H | style="text-align:center;" | Atmophile | data-sort-value=1,400| 1,400 (0.14%) | 75,000,000 | {{Cite web |date=2024-05-29 |title=Hydrogen |url=https://www.irena.org/Energy-Transition/Technology/Hydrogen |access-date=2024-05-23 |website=www.irena.org |language=en}} {{Cite web |title=Hydrogen Production |url=https://www.energy.gov/eere/fuelcells/hydrogen-production |access-date=2024-05-23}} |
style="background-color:#ffbb77"
| 15 | style="text-align:left;" | phosphorus | style="text-align:left;" | P | style="text-align:center;" | Lithophile | data-sort-value=1,050| 1,050 (0.105%) | 226,000,000 | {{Cite web |title=Phosphate rock production capacity worldwide |url=https://www.statista.com/statistics/1288972/global-phosphate-rock-production-capacity/ |access-date=2024-05-23 |website=Statista |language=en}} |
style="background-color:#ffbb77"
| 25 | style="text-align:left;" | manganese | style="text-align:left;" | Mn | style="text-align:center;" | Lithophile | data-sort-value=950| 950 (0.095%) | 16,000,000 | |
style="background-color:#ffbb77"
| 9 | style="text-align:left;" | fluorine | style="text-align:left;" | F | style="text-align:center;" | Lithophile | data-sort-value=585| 585 (0.0585%) | 17,000 | |
style="background-color:#ffbb77"
| 56 | style="text-align:left;" | barium | style="text-align:left;" | Ba | style="text-align:center;" | Lithophile | data-sort-value=425| 425 (0.0425%) | 6,000,000 | {{Cite web |title=Barium - Element information, properties and uses {{!}} Periodic Table |url=https://www.rsc.org/periodic-table/element/56/barium |access-date=2024-05-23 |website=www.rsc.org}} |
style="background-color:#ffbb77"
| 38 | style="text-align:left;" | strontium | style="text-align:left;" | Sr | style="text-align:center;" | Lithophile | data-sort-value=370| 370 (0.037%) |350,000 | |
style="background-color:#fff888"
| 16 | style="text-align:left;" | sulfur | style="text-align:left;" | S | style="text-align:center;" | Chalcophile | data-sort-value=350| 350 (0.035%) |69,300,000 | |
style="background-color:#bbffff"
| 6 | style="text-align:left;" | carbon | style="text-align:left;" | C | style="text-align:center;" | Atmophile | data-sort-value=200| 200 (0.02%) | 9,700,000,000 | |
style="background-color:#ffbb77"
| 40 | style="text-align:left;" | zirconium | style="text-align:left;" | Zr | style="text-align:center;" | Lithophile | data-sort-value=165| 165 (0.0165%) |1,460,000 | |
style="background-color:#ffbb77"
| 17 | style="text-align:left;" | chlorine | style="text-align:left;" | Cl | style="text-align:center;" | Lithophile | data-sort-value=145| 145 (0.0145%) |71,250,000 | {{Cite web |title=Chlorine global market volume 2030 |url=https://www.statista.com/statistics/1310477/chlorine-market-volume-worldwide/ |access-date=2024-05-23 |website=Statista |language=en}} |
style="background-color:#ffbb77"
| 23 | style="text-align:left;" | vanadium | style="text-align:left;" | V | style="text-align:center;" | Lithophile | data-sort-value=120| 120 (0.012%) |76,000 | |
style="background-color:#ffbb77"
| 24 | style="text-align:left;" | chromium | style="text-align:left;" | Cr | style="text-align:center;" | Lithophile | data-sort-value=102| 102 (0.0102%) |26,000,000 | |
style="background-color:#ffbb77"
| 37 | style="text-align:left;" | rubidium | style="text-align:left;" | Rb | style="text-align:center;" | Lithophile | data-sort-value=90| 90 (0.009%) | 2 | |
style="background-color:#ffe0f0"
| 28 | style="text-align:left;" | nickel | style="text-align:left;" | Ni | style="text-align:center;" | Siderophile | data-sort-value=84| 84 (0.0084%) |2,250,000 | |
style="background-color:#fff888"
| 30 | style="text-align:left;" | zinc | style="text-align:left;" | Zn | style="text-align:center;" | Chalcophile | data-sort-value=70| 70 (0.007%) |11,900,000 | |
style="background-color:#ffbb77"
| 58 | style="text-align:left;" | cerium | style="text-align:left;" | Ce | style="text-align:center;" | Lithophile | data-sort-value=66.5| 66.5 (0.00665%) | 24,000 | {{Cite web |last=MMTA |title=Cerium |url=https://mmta.co.uk/metals/ce/ |access-date=2024-05-23 |website=MMTA |language=en-US}} |
style="background-color:#fff888"
| 29 | style="text-align:left;" | copper | style="text-align:left;" | Cu | style="text-align:center;" | Chalcophile | data-sort-value=60| 60 (0.006%) |19,400,000 | |
style="background-color:#ffbb77"
| 60 | style="text-align:left;" | neodymium | style="text-align:left;" | Nd | style="text-align:center;" | Lithophile | data-sort-value=41.5| 41.5 (0.00415%) | 7,000 | {{Cite web |title=Neodymium - Elements Database |url=http://www.elementsdatabase.com/Neodymium-Nd-60-element/ |access-date=2024-05-23 |website=www.elementsdatabase.com}} |
style="background-color:#ffbb77"
| 57 | style="text-align:left;" | lanthanum | style="text-align:left;" | La | style="text-align:center;" | Lithophile | data-sort-value=39| 39 (0.0039%) | 12,500 | {{Cite web |last=MMTA |title=Lanthanum |url=https://mmta.co.uk/metals/la/ |access-date=2024-05-23 |website=MMTA |language=en-US}} |
style="background-color:#ffbb77"
| 39 | style="text-align:left;" | yttrium | style="text-align:left;" | Y | style="text-align:center;" | Lithophile | data-sort-value=33| 33 (0.0033%) |6,000 | |
style="background-color:#ffe0f0"
| 27 | style="text-align:left;" | cobalt | style="text-align:left;" | Co | style="text-align:center;" | Siderophile | data-sort-value=25| 25 (0.0025%) |123,000 | |
style="background-color:#ffbb77"
| 21 | style="text-align:left;" | scandium | style="text-align:left;" | Sc | style="text-align:center;" | Lithophile | data-sort-value=22| 22 (0.0022%) | 14 | {{Cite journal |title=Exploring global supply and demand of scandium oxide in 2030 |date=2023 |doi=10.1016/j.jclepro.2023.136673 |url=https://www.sciencedirect.com/science/article/abs/pii/S0959652623008314 |access-date=2024-05-23 |last1=Phoung |first1=Sinoun |last2=Williams |first2=Eric |last3=Gaustad |first3=Gabrielle |last4=Gupta |first4=Ajay |journal=Journal of Cleaner Production |volume=401 |bibcode=2023JCPro.40136673P |doi-access=free }} |
style="background-color:#ffbb77"
| 3 | style="text-align:left;" | lithium | style="text-align:left;" | Li | style="text-align:center;" | Lithophile | data-sort-value=20| 20 (0.002%) |35,000 | |
style="background-color:#ffbb77"
| 41 | style="text-align:left;" | niobium | style="text-align:left;" | Nb | style="text-align:center;" | Lithophile | data-sort-value=20| 20 (0.002%) |64,000 | |
style="background-color:#bbffff"
| 7 | style="text-align:left;" | nitrogen | style="text-align:left;" | N | style="text-align:center;" | Atmophile | data-sort-value=19| 19 (0.0019%) |140,000,000 | |
style="background-color:#fff888"
| 31 | style="text-align:left;" | gallium | style="text-align:left;" | Ga | style="text-align:center;" | Chalcophile | data-sort-value=19| 19 (0.0019%) | 315 | |
style="background-color:#fff888"
| 82 | style="text-align:left;" | lead | style="text-align:left;" | Pb | style="text-align:center;" | Chalcophile | data-sort-value=14| 14 (0.0014%) |4,820,000 | |
style="background-color:#ffbb77"
| 5 | style="text-align:left;" | boron | style="text-align:left;" | B | style="text-align:center;" | Lithophile | data-sort-value=10| 10 (0.001%) |9,400,000 | |
style="background-color:#ffbb77"
| 90 | style="text-align:left;" | thorium | style="text-align:left;" | Th | style="text-align:center;" | Lithophile | data-sort-value=9.6| 9.6 (0.00096%) | 5,000 | {{Cite web |last=Emsley |first=John |date=2010-09-01 |title=Thorium |url=https://edu.rsc.org/elements/thorium/2020027.article |access-date=2024-05-23 |website=RSC Education |language=en}} |
style="background-color:#ffbb77"
| 59 | style="text-align:left;" | praseodymium | style="text-align:left;" | Pr | style="text-align:center;" | Lithophile | data-sort-value=9.2| 9.2 (0.00092%) | 2,500 | {{Cite web |title=Praseodymium (Pr) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/pr.htm |access-date=2024-05-23 |website=www.lenntech.com}} |
style="background-color:#ffbb77"
| 62 | style="text-align:left;" | samarium | style="text-align:left;" | Sm | style="text-align:center;" | Lithophile | data-sort-value=7.05| 7.05 (0.000705%) | 700 | {{Cite web |last=MMTA |title=Samarium |url=https://mmta.co.uk/metals/sm/ |access-date=2024-05-23 |website=MMTA |language=en-US}} |
style="background-color:#ffbb77"
| 64 | style="text-align:left;" | gadolinium | style="text-align:left;" | Gd | style="text-align:center;" | Lithophile | data-sort-value=6.2| 6.2 (0.00062%) | 400 | {{Cite web |title=Gadolinium (Gd) |url=https://www.rwmmint.com/products/gadolinium |access-date=2024-05-23 |website=RWMM |language=en}} |
style="background-color:#ffbb77"
| 66 | style="text-align:left;" | dysprosium | style="text-align:left;" | Dy | style="text-align:center;" | Lithophile | data-sort-value=5.2| 5.2 (0.00052%) | 0.2 | {{Cite web |title=Dysprosium (Dy) |url=https://www.sciencedirect.com/science/article/pii/S0169136823001439|language=en}} |
style="background-color:#ffbb77"
| 68 | style="text-align:left;" | erbium | style="text-align:left;" | Er | style="text-align:center;" | Lithophile | data-sort-value=3.5| 3.5 (0.00035%) | 500 | {{Cite web |title=Erbium (Er) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/er.htm |access-date=2024-05-23 |website=www.lenntech.com}} |
style="background-color:#bbffff"
|18 | style="text-align:left;" | argon | style="text-align:left;" |Ar | style="text-align:center;" | Atmophile | data-sort-value=3.5|3.5 (0.00035%) | | |
style="background-color:#ffbb77"
| 70 | style="text-align:left;" | ytterbium | style="text-align:left;" | Yb | style="text-align:center;" | Lithophile | data-sort-value=3.2| 3.2 (0.00032%) | | |
style="background-color:#ffbb77"
| 72 | style="text-align:left;" | hafnium | style="text-align:left;" | Hf | style="text-align:center;" | Lithophile | data-sort-value=3.0| 3.0 (0.0003%) | 35 | {{cite web|title=Hafnium (Hf)|url=https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-zirconium-hafnium.pdf}} |
style="background-color:#ffbb77"
| 55 | style="text-align:left;" | caesium | style="text-align:left;" | Cs | style="text-align:center;" | Lithophile | data-sort-value=3.0| 3.0 (0.0003%) | | |
style="background-color:#ffbb77"
| 4 | style="text-align:left;" | beryllium | style="text-align:left;" | Be | style="text-align:center;" | Lithophile | data-sort-value=2.8| 2.8 (0.00028%) |220 | |
style="background-color:#ffbb77"
| 92 | style="text-align:left;" | uranium | style="text-align:left;" | U | style="text-align:center;" | Lithophile | data-sort-value=2.7| 2.7 (0.00027%) |74,119 | |
style="background-color:#ffbb77"
| 35 | style="text-align:left;" | bromine | style="text-align:left;" | Br | style="text-align:center;" | Lithophile | data-sort-value=2.4| 2.4 (0.00024%) |391,000 | |
style="background-color:#fff888"
| 50 | style="text-align:left;" | tin | style="text-align:left;" | Sn | style="text-align:center;" | Chalcophile | data-sort-value=2.3| 2.3 (0.00023%) |280,000 | |
style="background-color:#ffbb77"
| 73 | style="text-align:left;" | tantalum | style="text-align:left;" | Ta | style="text-align:center;" | Lithophile | data-sort-value=2.0| 2.0 (0.0002%) |1,100 | |
style="background-color:#ffbb77"
| 63 | style="text-align:left;" | europium | style="text-align:left;" | Eu | style="text-align:center;" | Lithophile | data-sort-value=2.0| 2.0 (0.0002%) | 35.8 | {{cite web|title=Europium (Eu)|url=https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-rare-earths.pdf}} |
style="background-color:#fff888"
| 33 | style="text-align:left;" | arsenic | style="text-align:left;" | As | style="text-align:center;" | Chalcophile | data-sort-value=1.8| 1.8 (0.00018%) |36,500 | |
style="background-color:#fff888"
| 32 | style="text-align:left;" | germanium | style="text-align:left;" | Ge | style="text-align:center;" | Chalcophile | data-sort-value=1.5| 1.5 (0.00015%) |155 | |
style="background-color:#ffbb77"
| 67 | style="text-align:left;" | holmium | style="text-align:left;" | Ho | style="text-align:center;" | Lithophile | data-sort-value=1.3| 1.3 (0.00013%) | | |
style="background-color:#ffe0f0"
| 74 | style="text-align:left;" | tungsten | style="text-align:left;" | W | style="text-align:center;" | Siderophile | data-sort-value=1.25| 1.25 (0.000125%) |86,400 | |
style="background-color:#ffe0f0"
| 42 | style="text-align:left;" | molybdenum | style="text-align:left;" | Mo | style="text-align:center;" | Siderophile | data-sort-value=1.2| 1.2 (0.00012%) |227,000 | |
style="background-color:#ffbb77"
| 65 | style="text-align:left;" | terbium | style="text-align:left;" | Tb | style="text-align:center;" | Lithophile | data-sort-value=1.2| 1.2 (0.00012%) | | |
style="background-color:#fff888"
| 81 | style="text-align:left;" | thallium | style="text-align:left;" | Tl | style="text-align:center;" | Chalcophile | data-sort-value=0.85| 0.85 (8.5{{e | |
5}}%)
| 10 | |
style="background-color:#ffbb77"
|71 | style="text-align:left;" | lutetium | style="text-align:left;" |Lu | style="text-align:center;" | Lithophile | data-sort-value=0.8| 0.8 (8{{e | |
5}}%)
| | |
style="background-color:#ffbb77"
| 69 | style="text-align:left;" | thulium | style="text-align:left;" | Tm | style="text-align:center;" | Lithophile | data-sort-value=0.52| 0.52 (5.2{{e | |
5}}%)
| | |
style="background-color:#ffbb77"
| 53 | style="text-align:left;" | iodine | style="text-align:left;" | I | style="text-align:center;" | Lithophile | data-sort-value=0.45| 0.45 (4.5{{e | |
5}}%)
|31,600 | |
style="background-color:#fff888"
| 49 | style="text-align:left;" | indium | style="text-align:left;" | In | style="text-align:center;" | Chalcophile | data-sort-value=0.25| 0.25 (2.5{{e | |
5}}%)
|655 | |
style="background-color:#fff888"
| 51 | style="text-align:left;" | antimony | style="text-align:left;" | Sb | style="text-align:center;" | Chalcophile | data-sort-value=0.2| 0.2 (2{{e | |
5}}%)
|130,000 | |
style="background-color:#fff888"
| 48 | style="text-align:left;" | cadmium | style="text-align:left;" | Cd | style="text-align:center;" | Chalcophile | data-sort-value=0.15| 0.15 (1.5{{e | |
5}}%)
| 23,000 | |
style="background-color:#fff888"
| 80 | style="text-align:left;" | mercury | style="text-align:left;" | Hg | style="text-align:center;" | Chalcophile | data-sort-value=0.085| 0.085 (8.5{{e | |
6}}%)
|4,500 | |
style="background-color:#fff888"
| 47 | style="text-align:left;" | silver | style="text-align:left;" | Ag | style="text-align:center;" | Chalcophile | data-sort-value=0.075| 0.075 (7.5{{e | |
6}}%)
|27,000 | |
style="background-color:#fff888"
| 34 | style="text-align:left;" | selenium | style="text-align:left;" | Se | style="text-align:center;" | Chalcophile | data-sort-value=0.05| 0.05 (5{{e | |
6}}%)
|2,200 | |
style="background-color:#ffe0f0"
| 46 | style="text-align:left;" | palladium | style="text-align:left;" | Pd | style="text-align:center;" | Siderophile | data-sort-value=0.015| 0.015 (1.5{{e | |
6}}%)
| 208 | |
style="background-color:#fff888"
| 83 | style="text-align:left;" | bismuth | style="text-align:left;" | Bi | style="text-align:center;" | Chalcophile | data-sort-value=0.0085| 0.0085 (8.5{{e | |
7}}%)
|10,200 | |
style="background-color:#bbffff"
|2 | style="text-align:left;" | helium | style="text-align:left;" |He | style="text-align:center;" | Atmophile | data-sort-value=0.008|0.008 (8{{e | |
7}}%)
| | |
style="background-color:#bbffff"
|10 | style="text-align:left;" | neon | style="text-align:left;" |Ne | style="text-align:center;" | Atmophile | data-sort-value=0.005|0.005 (5{{e | |
7}}%)
| | |
style="background-color:#ffe0f0"
| 78 | style="text-align:left;" | platinum | style="text-align:left;" | Pt | style="text-align:center;" | Siderophile | data-sort-value=0.005| 0.005 (5{{e | |
7}}%)
|172 | |
style="background-color:#ffe0f0"
| 79 | style="text-align:left;" | gold | style="text-align:left;" | Au | style="text-align:center;" | Siderophile | data-sort-value=0.004| 0.004 (4{{e | |
7}}%)
|3,100 | |
style="background-color:#ffe0f0"
| 76 | style="text-align:left;" | osmium | style="text-align:left;" | Os | style="text-align:center;" | Siderophile | data-sort-value=0.0015| 0.0015 (1.5{{e | |
7}}%)
| | |
style="background-color:#fff888"
| 52 | style="text-align:left;" | tellurium | style="text-align:left;" | Te | style="text-align:center;" | Chalcophile | data-sort-value=0.001| 0.001 (1{{e | |
7}}%)
|2,200 | |
style="background-color:#ffe0f0"
| 44 | style="text-align:left;" | ruthenium | style="text-align:left;" | Ru | style="text-align:center;" | Siderophile | data-sort-value=0.001| 0.001 (1{{e | |
7}}%)
| | |
style="background-color:#ffe0f0"
| 77 | style="text-align:left;" | iridium | style="text-align:left;" | Ir | style="text-align:center;" | Siderophile | data-sort-value=0.001| 0.001 (1{{e | |
7}}%)
| | |
style="background-color:#ffe0f0"
| 45 | style="text-align:left;" | rhodium | style="text-align:left;" | Rh | style="text-align:center;" | Siderophile | data-sort-value=0.001| 0.001 (1{{e | |
7}}%)
| | |
style="background-color:#ffe0f0"
| 75 | style="text-align:left;" | rhenium | style="text-align:left;" | Re | style="text-align:center;" | Siderophile | data-sort-value=0.0007| 0.0007 (7{{e | |
8}}%)
| 47.2 | |
style="background-color:#bbffff"
|36 | style="text-align:left;" | krypton | style="text-align:left;" |Kr | style="text-align:center;" | Atmophile | data-sort-value=0.0001|0.0001 (1{{e | |
8}}%)
| | |
style="background-color:#bbffff"
|54 | style="text-align:left;" | xenon | style="text-align:left;" |Xe | style="text-align:center;" | Atmophile | data-sort-value=3e-5|3{{e | |
5}} (3{{e | |
9}}%)
| | |
91
| style="text-align:left;" | protactinium | style="text-align:left;" |Pa | style="text-align:center;" | trace | data-sort-value=1.4e-6|1.4{{e | |
6}} (1.4{{e | |
10}}%)
| | |
88
| style="text-align:left;" | radium | style="text-align:left;" |Ra | style="text-align:center;" | trace | data-sort-value=9e-7|9{{e | |
7}} (9{{e | |
11}}%)
| | |
89
| style="text-align:left;" | actinium | style="text-align:left;" |Ac | style="text-align:center;" | trace | data-sort-value=5.5e-10|5.5{{e | |
10}} (6{{e | |
14}}%)
| | |
84
| style="text-align:left;" | polonium | style="text-align:left;" |Po | style="text-align:center;" | trace | data-sort-value=2e-10|2{{e | |
10}} (2{{e | |
14}}%)
| | |
86
| style="text-align:left;" | radon | style="text-align:left;" |Rn | style="text-align:center;" | trace | data-sort-value=4e-13|4{{e | |
13}} (4{{e | |
17}}%)
| | |
43
| style="text-align:left;" | technetium | style="text-align:left;" |Tc | style="text-align:center;" | trace | data-sort-value=0| | | |
61
| style="text-align:left;" | promethium | style="text-align:left;" |Pm | style="text-align:center;" | trace | data-sort-value=0| | | |
85
| style="text-align:left;" | astatine | style="text-align:left;" |At | style="text-align:center;" | trace | data-sort-value=0| | | |
87
| style="text-align:left;" | francium | style="text-align:left;" |Fr | style="text-align:center;" | trace | data-sort-value=0| | | |
94
| style="text-align:left;" | plutonium | style="text-align:left;" |Pu | style="text-align:center;" | trace | data-sort-value=0| | | |
93
| style="text-align:left;" | neptunium | style="text-align:left;" |Np | style="text-align:center;" | trace | data-sort-value=0| | |
See also
- {{annotated link| Abundances of the elements (data page)}}
- {{annotated link| Atmospheric chemistry}}
- {{annotated link| Clarke number}}
- {{annotated link| List of chemical elements}}
- {{annotated link| Oklo phenomenon}}
- {{annotated link| Primordial nuclide}}
References
{{Reflist}}
Further reading
- {{Cite journal |last=Fleischer |first=Michael |date=September 1954 |title=The abundance and distribution of the chemical elements in the earth's crust |url=https://pubs.acs.org/doi/abs/10.1021/ed031p446 |journal=Journal of Chemical Education |language=en |volume=31 |issue=9 |pages=446 |doi=10.1021/ed031p446 |bibcode=1954JChEd..31..446F |issn=0021-9584|quote=Examines the abundance and distribution of the chemical elements in the earth's crust, as well as the figures and methods that have contributed to this knowledge.|url-access=subscription }}
External links
- BookRags, [http://www.bookrags.com/periodictable/ Periodic Table].
- World Book Encyclopedia, [https://web.archive.org/web/20090421205808/http://www.worldbook.com/wb/Students?content_spotlight%2Fearth%2Fexploring Exploring Earth].
- HyperPhysics, Georgia State University, [http://hyperphysics.phy-astr.gsu.edu/hbase/tables/elabund.html Abundance of Elements in Earth's Crust].
- Eric Scerri, The Periodic Table, Its Story and Its Significance, Oxford University Press, 2007
- {{Cite web |title=EarthRef.org Digital Archive (ERDA) -- Major Element Composition of the Core vs the Bulk Earth |url=https://earthref.org/ERDA/526/ |access-date=2024-03-22 |website=earthref.org}}
- {{Cite web |title=GERM Reservoir Database -- Reservoir Data Model |url=https://earthref.org/GERMRD/reservoirs/ |access-date=2024-03-22 |website=earthref.org}}
Category:Structure of the Earth
Category:Properties of chemical elements