:Anyonic Lie algebra

{{Short description|Graded vector space equipped with a bilinear operator}}

In mathematics, an anyonic Lie algebra is a U(1) graded vector space L over \Complex equipped with a bilinear operator [\cdot, \cdot] \colon L \times L \rightarrow L and linear maps \varepsilon \colon L \to \Complex (some authors use |\cdot| \colon L \to \Complex) and \Delta \colon L \to L\otimes L such that \Delta X = X_i \otimes X^i, satisfying following axioms:{{Cite journal| last=Majid|first=S.| date=21 Aug 1997| title=Anyonic Lie Algebras| journal=Czechoslov. J. Phys.|volume=47| issue=12| pages=1241–1250| arxiv=q-alg/9708022| doi=10.1023/A:1022877616496| bibcode=1997CzJPh..47.1241M}}

  • \varepsilon([X,Y]) = \varepsilon(X)\varepsilon(Y)
  • [X, Y]_i \otimes [X, Y]^i = [X_i, Y_j] \otimes [X^i, Y^j] e^{\frac{2\pi i}{n} \varepsilon(X^i) \varepsilon(Y_j)}
  • X_i \otimes [X^i, Y] = X^i \otimes [X_i, Y] e^{\frac{2 \pi i}{n}

\varepsilon(X_i) (2\varepsilon(Y) + \varepsilon(X^i)) }

  • [X, [Y, Z]] = X_i, Y], [X^i, Z e^{\frac{2 \pi i}{n} \varepsilon(Y) \varepsilon(X^i)}

for pure graded elements X, Y, and Z.

References