:Anyonic Lie algebra
{{Short description|Graded vector space equipped with a bilinear operator}}
In mathematics, an anyonic Lie algebra is a U(1) graded vector space over equipped with a bilinear operator and linear maps (some authors use ) and such that , satisfying following axioms:{{Cite journal| last=Majid|first=S.| date=21 Aug 1997| title=Anyonic Lie Algebras| journal=Czechoslov. J. Phys.|volume=47| issue=12| pages=1241–1250| arxiv=q-alg/9708022| doi=10.1023/A:1022877616496| bibcode=1997CzJPh..47.1241M}}
\varepsilon(X_i) (2\varepsilon(Y) + \varepsilon(X^i)) }
for pure graded elements X, Y, and Z.