:Brake-specific fuel consumption

{{Short description|Measure of the fuel efficiency of internal combustion engines}}

Brake-specific fuel consumption (BSFC) is a measure of the fuel efficiency of any prime mover that burns fuel and produces rotational, or shaft power. It is typically used for comparing the efficiency of internal combustion engines with a shaft output.

It is the rate of fuel consumption divided by the power produced.

In traditional units, it measures fuel consumption in pounds per hour divided by the brake horsepower, lb/(hp⋅h); in SI units, this corresponds to the inverse of the units of specific energy, kg/J = s2/m2.

It may also be thought of as power-specific fuel consumption, for this reason. BSFC allows the fuel efficiency of different engines to be directly compared.

The term "brake" here as in "brake horsepower" refers to a historical method of measuring torque (see Prony brake).

==Calculation==

The brake-specific fuel consumption is given by,

: \text{BSFC}= \frac{r}{P}

where:

: r is the fuel consumption rate in grams per second (g/s)

: P is the power produced in watts where P = \tau \omega (W)

::\omega is the engine speed in radians per second (rad/s)

::\tau is the engine torque in newton metres (N⋅m)

The above values of r, \omega, and \tau may be readily measured by instrumentation with an engine mounted in a test stand and a load applied to the running engine. The resulting units of BSFC are grams per joule (g/J)

Commonly BSFC is expressed in units of grams per kilowatt-hour (g/(kW⋅h)). The conversion factor is as follows:

:BSFC [g/(kW⋅h)] = BSFC [g/J] × (3.6 × 106)

The conversion between metric and imperial units is:

:BSFC [g/(kW⋅h)] = BSFC [lb/(hp⋅h)] × 608.277

:BSFC [lb/(hp⋅h)] = BSFC [g/(kW⋅h)] × 0.001644

Relation to efficiency

To calculate the actual efficiency of an engine requires the energy density of the fuel being used.

Different fuels have different energy densities defined by the fuel's heating value. The lower heating value (LHV) is used for internal-combustion-engine-efficiency calculations because the heat at temperatures below {{convert|150|°C|-1|abbr=on}} cannot be put to use.

Some examples of lower heating values for vehicle fuels are:

::Certification gasoline = 18,640 BTU/lb (0.01204 kW⋅h/g)

::Regular gasoline = 18,917 BTU/lb (0.0122222 kW⋅h/g)

::Diesel fuel = 18,500 BTU/lb (0.0119531 kW⋅h/g)

Thus a diesel engine's efficiency = 1/(BSFC × 0.0119531) and a gasoline engine's efficiency = 1/(BSFC × 0.0122225)

Operating values and as a cycle average statistic

File:Brake specific fuel consumption.svg

{{main article|Consumption map}}

Any engine will have different BSFC values at different speeds and loads. For example, a reciprocating engine achieves maximum efficiency when the intake air is unthrottled and the engine is running near its peak torque. The efficiency often reported for a particular engine, however, is not its maximum efficiency but a fuel economy cycle statistical average. For example, the cycle average value of BSFC for a gasoline engine is 322 g/(kW⋅h), translating to an efficiency of 25% (1/(322 × 0.0122225) = 0.2540). Actual efficiency can be lower or higher than the engine’s average due to varying operating conditions. In the case of a production gasoline engine, the most efficient BSFC is approximately 225 g/(kW⋅h), which is equivalent to a thermodynamic efficiency of 36%.

An iso-BSFC map (fuel island plot) of a diesel engine is shown. The sweet spot at 206 BSFC has 40.6% efficiency. The x-axis is rpm; y-axis is BMEP in bar (bmep is proportional to torque)

{{clear}}

Engine design and class

BSFC numbers change a lot for different engine designs, and compression ratio and power rating. Engines of different classes like diesels and gasoline engines will have very different BSFC numbers, ranging from less than 200 g/(kW⋅h) (diesel at low speed and high torque) to more than 1,000 g/(kW⋅h) (turboprop at low power level).

Examples for shaft engines

The following table takes values as an example for the specific fuel consumption of several types of engines. For specific engines values can and often do differ from the table values shown below. Energy efficiency is based on a lower heating value of 42.7 MJ/kg ({{#expr:3600/42.7round1}} g/(kW⋅h)) for diesel fuel and jet fuel, 43.9 MJ/kg ({{#expr:3600/43.9round1}} g/(kW⋅h)) for gasoline.

class="wikitable sortable"

|+

! kW !! HP

! Year

! Engine

! Type

! Application

! lb/(hp⋅h)

! g/(kW⋅h)

! Efficiency

style="background-color: AliceBlue"

| {{convert|48|kW|hp|disp=table|sortable=on}}

| 1989

| Rotax 582

| gasoline, 2-stroke

| Aviation, Ultralight, Eurofly Fire Fox

| {{convert|425|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://docusearch.flyrotax.com/files/pdf/d04495.pdf |title= Operator Manual for 447/503/582 |publisher= Rotax |date= Sep 2010 |access-date= 2018-06-08 |archive-url= https://web.archive.org/web/20170722033156/http://docusearch.flyrotax.com/files/pdf/d04495.pdf |archive-date= 2017-07-22 |url-status= dead }}

| {{#expr:3600/43.9/425*100round1}}%

style="background-color: MistyRose"

| {{convert|431|hp|kW|disp=table|sortable=on|order=flip}}

| 1987

| PW206B/B2

| turboshaft

| Helicopter, EC135

| {{convert|0.553|lb/hp.h|g/kW.h|disp=table|sortable=on}}{{cite magazine |title= Gas Turbine Engines |magazine= Aviation Week |date= January 2008 |url= https://web.archive.org/web/20181106021310if_/http://www.geocities.jp/nomonomo2007/AircraftDatabase/AWdata/AviationWeekPages/GTEnginesAWJan2008.pdf }}

| {{#expr:3600/43.9/336.4*100round1}}%

style="background-color: MistyRose"

| {{convert|572|hp|kW|disp=table|sortable=on|order=flip}}

| 1987

| PW207D

| turboshaft

| Helicopter, Bell 427

| {{convert|0.537|lb/hp.h|g/kW.h|disp=table|sortable=on}}

| {{#expr:3600/43.9/326.6*100round1}}%

style="background-color: MistyRose"

| {{convert|670|hp|kW|disp=table|sortable=on|order=flip}}

| 1981

| Arrius 2B1/2B1A-1

| turboshaft

| Helicopter, EC135

| {{convert|0.526|lb/hp.h|g/kW.h|disp=table|sortable=on}}

| {{#expr:3600/43.9/320*100round1}}%

style="background-color: Linen"

| {{convert|17.8|PS|kW|disp=table|sortable=on|order=flip}}

| 1897

| Motor 250/400Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Vieweg (Springer), Braunschweig/Wiesbaden 1984, {{ISBN|978-3-528-14889-8}}, p. 7

| Diesel, four-stroke

| Stationary industrial Diesel engine

| {{convert|324|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}

| {{#expr:3600/42.4/324*100round1}}%

style="background-color: MistyRose"

| {{convert|1100|hp|kW|disp=table|sortable=on|order=flip}}

| 1960

| PT6C-67C

| turboshaft

| Helicopter, AW139

| {{convert|0.490|lb/hp.h|g/kW.h|disp=table|sortable=on}}

| {{#expr:3600/43.9/298.1*100round1}}%

style="background-color: AliceBlue"

| {{convert|515|kW|hp|disp=table|sortable=on}}

|1991

|Mazda R26B{{cite conference | last1=Shimizu | first1=Ritsuharu | last2=Tadokoro | first2=Tomoo | last3=Nakanishi | first3=Toru | last4=Funamoto | first4=Junichi | title=SAE Technical Paper Series | chapter=Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance Race | publisher=SAE International | publication-place= | date=1992-02-01 | volume=1 | issn=0148-7191 | doi=10.4271/920309 | page=4}}

| Wankel, four-rotor

| Race car, Mazda 787B

| {{convert|286|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}

| {{#expr:3600/43.9/286*100round1}}%

style="background-color: MistyRose"

| {{convert|1285|hp|kW|disp=table|sortable=on|order=flip}}

| 1989

| MTR390

| turboshaft

| Helicopter, Tiger

| {{convert|0.460|lb/hp.h|g/kW.h|disp=table|sortable=on}}

| {{#expr:3600/43.9/279.8*100round1}}%

style="background-color: AliceBlue"

| {{convert|84.5|kW|hp|disp=table|sortable=on}}

| 1996

| Rotax 914

| gasoline, turbo

| Aviation, Light-sport aircraft, WT9 Dynamic

| {{convert|276|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://docusearch.flyrotax.com/files/pdf/d06153.pdf |title= Operator Manual for 914 series |publisher= Rotax |date= Apr 2010 |access-date= 2018-06-08 |archive-url= https://web.archive.org/web/20170611004034/http://docusearch.flyrotax.com/files/pdf/d06153.pdf |archive-date= 2017-06-11 |url-status= dead }}

| {{#expr:3600/43.9/276*100round1}}%

style="background-color: AliceBlue"

| {{convert|118|hp|kW|disp=table|sortable=on|order=flip}}

| 1942

| Lycoming O-235-L

| gasoline

| Aviation, General aviation, Cessna 152

| {{convert|{{#expr:5.8/77*6round3}}|lb/hp.h|g/kW.h|0|disp=table|sortable=on}}{{citation |url=https://www.lycoming.com/sites/default/files/O-235%26O-290%20Operator%20Manual%2060297-9.pdf |title= O-235 and O-290 Operator's Manual |publisher= Lycoming |date= Jan 2007 |pages=3–8 version-L}}

| {{#expr:3600/43.9/{{convert|{{#expr:5.8/77*6}}|lb/hp.h|g/kW.h|disp=number}}*100round1}}%

style="background-color: AliceBlue"

| {{convert|456|kW|hp|disp=table|sortable=on}}

| 1988

| Honda RA168E

| gasoline, turbo

| Race car, McLaren MP4/4

| {{convert|272|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{citation |chapter-url=https://www.sae.org/publications/technical-papers/content/890877/ |chapter= Honda Formula One Turbo-charged V-6 1.5L Engine |publisher= SAE |date= 1989-02-01 |doi= 10.4271/890877 |title= SAE Technical Paper Series |last1= Otobe |first1= Yutaka |last2= Goto |first2= Osamu |last3= Miyano |first3= Hideyo |last4= Kawamoto |first4= Michio |last5= Aoki |first5= Akio |last6= Ogawa |first6= Tohru |volume= 1 }}

| 31.6%

style="background-color: MistyRose"

| {{cvt|2380|hp|kW|disp=table|sortable=on|order=flip}}

| 1973

| GE T700

| turboshaft

| Helicopter, AH-1/UH-60/AH-64

| {{cvt|0.433|lb/hp.h|g/kW.h|disp=table|sortable=on}}{{cite conference |work=Global Research |title= GE turbines and small engines overview |publisher=General Electric |url= https://arpa-e.energy.gov/sites/default/files/14_deBock_GE%20Turbines%20and%20small%20engines%20overview%20-%20ARPA-e%20INTEGRATE%20V2.pdf |conference-url= https://arpa-e.energy.gov/2019-integrate-annual-meeting |author= Peter deBock |conference= ARPA-e INTEGRATE meeting |date= September 18, 2019}}

| {{#expr:3600/43.9/263.384*100round1}}%

style="background-color: MistyRose"

| {{cvt|5071|hp|kW|disp=table|sortable=on|order=flip}}

| 1995

| PW150

| turboprop

| Airliner, Dash 8-400

| {{cvt|0.433|lb/hp.h|g/kW.h|disp=table|sortable=on}}

| {{#expr:3600/43.9/263.384*100round1}}%

style="background-color: MistyRose"

| {{convert|2412|hp|kW|disp=table|sortable=on|order=flip}}

| 1984

| RTM322-01/9

| turboshaft

| Helicopter, NH90

| {{convert|0.420|lb/hp.h|g/kW.h|disp=table|sortable=on}}

| {{#expr:3600/43.9/255.5*100round1}}%

style="background-color: AliceBlue"

| {{convert|63|kW|hp|disp=table|sortable=on}}

| 1991

| GM Saturn I4 engine

| gasoline

| Cars, Saturn S-Series

| {{convert|250|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://michaelsoroka.com/2014/03/26/are-airplane-engines-inefficient/ |title= Are Airplane Engines Inefficient? |author= Michael Soroka |date= March 26, 2014}}

| {{#expr:3600/43.9/250*100round1}}%

style="background-color: AliceBlue"

| {{convert|150|kW|hp|disp=table|sortable=on}}

| 2011

| Ford EcoBoost

| gasoline, turbo

| Cars, Ford

| {{convert|245|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2011/adv_combustion/ace065_rinkevich_2011_o.pdf |title= Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development |publisher= Ford Research and Advanced Engineering |date= May 13, 2011}}

| {{#expr:3600/43.9/245*100round1}}%

style="background-color: AliceBlue"

| {{convert|400|hp|kW|disp=table|order=flip|sortable=on}}

| 1961

| Lycoming IO-720

| gasoline

| Aviation, General aviation, PAC Fletcher

| {{convert|{{#expr:16/240*6round3}}|lb/hp.h|g/kW.h|0|disp=table|sortable=on}}{{citation |url= https://www.lycoming.com/sites/default/files/IO-720%20Operator%20Manual%2060297-19.pdf |title= IO-720 Operator's Manual |publisher= Lycoming |date= October 2006 |pages= 3–8}}

| {{#expr:3600/43.9/{{convert|{{#expr:16/240*6}}|lb/hp.h|g/kW.h|disp=number}}*100round1}}%

style="background-color: MistyRose"

| {{cvt|7,500|hp|kW|disp=table|sortable=on|order=flip}}

| 1989

| GE T408

| turboshaft

| Helicopter, CH-53K

| {{cvt|0.4|lb/hp.h|g/kW.h|disp=table|sortable=on}}

| {{#expr:3600/43.9/243*100round1}}%

style="background-color: MistyRose"

| {{convert|7,000|kW|hp|disp=table|sortable=on}}

| 1986

| Rolls-Royce MT7

| gas turbine

| Hovercraft, SSC

| {{convert|243.2|g/kW.h|lb/hp.h|order=flip|disp=table|sortable=on}}{{cite web |url= https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/mt7-brochure.pdf |title= MT7 Brochure |publisher= Rolls-Royce |date= 2012 |access-date= 2018-07-09 |archive-url= https://web.archive.org/web/20170420204819/https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/mt7-brochure.pdf |archive-date= 2017-04-20 |url-status= dead }}

| {{#expr:3600/42.7/243.2*100round1}}%

style="background-color: AliceBlue"

| {{convert|2,000|kW|hp|disp=table|sortable=on}}

| 1945

| Wright R-3350 Duplex-Cyclone

| gasoline, turbo-compound

| Aviation, Commercial aviation; B-29, Constellation, DC-7

| {{convert|0.380|lb/hp.h|g/kW.h|0|disp=table|sortable=on}}{{cite web |url= http://www.enginehistory.org/Wright/Wright%20R-3350.pdf |title= Wright R-3350 "Cyclone 18" |author= Kimble D. McCutcheon |date= 27 October 2014 |url-status= dead |archive-url= https://web.archive.org/web/20160801001759/http://www.enginehistory.org/Wright/Wright%20R-3350.pdf |archive-date= 1 August 2016 }}

| {{#expr:3600/43.9/{{convert|0.380|lb/hp.h|g/kW.h|disp=number}}*100round1}}%

style="background-color: AliceBlue"

| {{convert|57|kW|hp|disp=table|sortable=on}}

| 2003

| Toyota 1NZ-FXE

| gasoline

| Car, Toyota Prius

| {{convert|225|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite book |chapter-url= http://www.sae.org/technical/papers/2004-01-0064 |chapter=Development of New-Generation Hybrid System THS II - Drastic Improvement of Power Performance and Fuel Economy |publisher= Society of Automotive Engineers |date= 8 March 2004|doi=10.4271/2004-01-0064 |title=SAE Technical Paper Series |last1=Muta |first1=Koichiro |last2=Yamazaki |first2=Makoto |last3=Tokieda |first3=Junji |volume=1 }}

| {{#expr:3600/43.9/225*100round1}}%

style="background-color: MistyRose"

| {{convert|134|kW|hp|disp=table|sortable=on}}

| 2013

| Lycoming DEL-120

| Diesel four-stroke

| MQ-1C Gray Eagle{{Cite web |date=22 October 2013 |title=GA-ASI's Improved Gray Eagle Flies Over 45 Hours Non-Stop |url=https://www.ga.com/ga-asis-improved-gray-eagle-flies-over-45-hours-non-stop |access-date=2024-07-20 |website=General Atomics |language=en}}

| {{convert|0.36|lb/hp.h|g/kW.h|0|disp=table|sortable=on}}

| {{#expr:3600/42.7/219*100round1}}%

style="background-color: MistyRose"

| {{convert|8251|kW|hp|disp=table|sortable=on}}

| 2005

| Europrop TP400

| turboprop

| Airbus A400M

| {{convert|0.350|lb/hp.h|g/kW.h|0|disp=table|sortable=on}}{{cite conference |date=27–29 July 2015 |doi=10.2514/6.2015-4028 |edition=51st |conference=AIAA/SAE/ASEE Joint Propulsion Conference |title=A composite cycle engine concept with hecto-pressure ratio |url=https://www.researchgate.net/publication/278674579 |surname1=Kaiser |given1=Sascha |surname2=Donnerhack |given2=Stefan |surname3=Lundbladh |given3=Anders |surname4=Seitz |given4=Arne}}

| {{#expr:3600/42.7/213*100round1}}%

style="background-color: Linen"

| {{convert|550|kW|hp|disp=table|sortable=on}}

| 1931

| Junkers Jumo 204

| diesel two-stroke, turbo

|Aviation, Commercial aviation, Junkers Ju 86

| {{convert|{{convert|155|kW|PS|disp=number}}|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}inter-action association, 1987

| {{#expr:3600/42.7/{{convert|155|kW|PS|disp=number}}*100round1}}%

style="background-color: MistyRose"

| {{convert|36,000|kW|hp|disp=table|sortable=on}}

| 2002

| Rolls-Royce Marine Trent

| turboshaft

| Marine propulsion

| {{convert|207|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://www.civilengineeringhandbook.tk/fuel-injection/marine-trent-30.html |publisher= Civil Engineering Handbook |title= Marine Trent |date= 19 Mar 2015}}

| {{#expr:3600/42.7/207*100round1}}%

style="background-color: Linen"

| {{convert|2,340|kW|hp|disp=table|sortable=on}}

| 1949

| Napier Nomad

| Diesel-compound

| Concept Aircraft engine

| {{convert|0.340|lb/hp.h|g/kW.h|0|disp=table|sortable=on}}{{cite web |url= https://www.flightglobal.com/pdfarchive/view/1954/1954%20-%201219.html |title= Napier Nomad |publisher= Flight |date= 30 April 1954}}

| {{#expr:3600/42.7/{{convert|0.340|lb/hp.h|g/kW.h|disp=number}}*100round1}}%

style="background-color: Linen"

| {{convert|165|kW|hp|disp=table|sortable=on}}

| 2000

| Volkswagen 3.3 V8 TDI

| Diesel

| Car, Audi A8

| {{convert|205|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{ cite press release |url= http://www.audiworld.com/news/00/a80709/content.shtml |title= The new Audi A8 3.3 TDI quattro: Top TDI for the luxury class |publisher= Audi AG |date= July 10, 2000}}

| {{#expr:3600/42.7/205*100round1}}%

style="background-color: Linen"

| {{convert|2,013|kW|hp|disp=table|sortable=on}}

| 1940

| Deutz DZ 710

| Diesel two-stroke

| Concept Aircraft engine

| {{convert|0.330|lb/hp.h|g/kW.h|0|disp=table|sortable=on}}{{cite web |url= http://www.ibiblio.org/pub/academic/history/marshall/military/airforce/engines.txt |title= Jane's Fighting Aircraft of World War II |publisher= Bracken Books |location= London, UK |date= 1989}}

| {{#expr:3600/42.7/{{convert|0.330|lb/hp.h|g/kW.h|disp=number}}*100round1}}%

style="background-color: MistyRose"

| {{convert|42,428|kW|hp|disp=table|sortable=on}}

| 1993

| GE LM6000

| turboshaft

| Marine propulsion, Electricity generation

| {{convert|200.1|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://www.geaviation.com/engines/docs/marine/datasheet-lm6000.pdf |title= LM6000 Marine Gas Turbine |publisher= General Electric |date= 2016 |url-status= dead |archive-url= https://web.archive.org/web/20161119115601/http://www.geaviation.com/engines/docs/marine/datasheet-lm6000.pdf |archive-date= 2016-11-19 }}

| {{#expr:3600/42.7/200.1*100round1}}%

style="background-color: Linen"

| {{convert|130|kW|hp|disp=table|sortable=on}}

| 2007

| BMW N47 2L

| Diesel

| Cars, BMW

| {{convert|198|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://www.auto-innovations.com/site/dossier5/BMWn47t28print.html |title= BMW 2.0d (N47) |publisher= Auto-innovations |date= June 2007 |language= fr}}

| {{#expr:3600/42.7/198*100round1}}%

style="background-color: Linen"

| {{convert|88|kW|hp|disp=table|sortable=on}}

| 1990

| Audi 2.5L TDI

| Diesel

| Car, Audi 100

| {{convert|198|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite book |chapter-url= http://www.sae.org/technical/papers/900648 |chapter= The New Audi 5-Cylinder Turbo Diesel Engine: The First Passenger Car Diesel Engine with Second Generation Direct Injection |publisher= Society of Automotive Engineers |date= 1 February 1990 |doi= 10.4271/900648 |title= SAE Technical Paper Series |last1= Stock |first1= Dieter |last2= Bauder |first2= Richard |volume= 1 }}

| {{#expr:3600/42.7/198*100round1}}%

style="background-color: Linen"

| {{convert|66|kW|hp|disp=table|sortable=on}}

| 1992

| VAG 1.9TDI 66kw

| Diesel 4-stroke

| Car, Audi 80, VW Golf/Passat

| {{convert|197|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= https://pics.tdiclub.com/data/500/19210sae972686.pdf |title= Realizing Future Trends in Diesel Engine Development |publisher= Society of Automotive Engineers/VAG}}

| {{#expr:3600/42.7/197*100round1}}%

style="background-color: Linen"

| {{convert|368|kW|hp|disp=table|sortable=on}}

| 2017

| MAN D2676LF51

| Diesel 4-stroke

| Truck/Bus

| {{convert|191|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= https://www.kraftur.is/wp-content/uploads/Higher-Efficiency-and-Reliability-Model-year-2019.pdf |title= MAN TGX 2019 |publisher= MAN Truck & Bus}}

| {{#expr:3600/42.7/191*100round1}}%

style="background-color: Linen"

| {{convert|620|kW|hp|disp=table|sortable=on}}

|

| Scania AB DC16 078A

| Diesel 4-stroke

| Electricity generation

| {{convert|190|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= https://www.scania.com/content/dam/scanianoe/market/master/products-and-services/engines/pdf/specs/power-gen/DC1678A_620-680kW.pdf |title= DC16 078A |publisher= Scania AB}}

| {{#expr:3600/42.7/190*100round1}}%

style="background-color: Linen"

| {{convert|1200|kW|hp|disp=table|sortable=on}}

| early 1990s

| Wärtsilä 6L20

| Diesel 4-stroke

| Marine propulsion

| {{convert|189.4|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= https://cdn.wartsila.com/docs/default-source/product-files/engines/ms-engine/product-guide-o-e-w20.pdf |title= Wärtsilä 20 product guide |publisher= Wärtsilä |date= 14 February 2017 }}

| {{#expr:3600/42.7/189.4*100round1}}%

style="background-color: Linen"

| {{convert|375|kW|hp|disp=table|sortable=on}}

| 2019

| MAN D2676LF78

| Diesel 4-stroke

| Truck/Bus

| {{convert|184|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= https://www.kraftur.is/wp-content/uploads/Higher-Efficiency-and-Reliability-Model-year-2019.pdf |title= MAN TGX 2019 |publisher= MAN Truck & Bus}}

| {{#expr:3600/42.7/184*100round1}}%

style="background-color: Linen"

| {{convert|3,600|kW|hp|disp=table|sortable=on}}

|

| MAN Diesel 6L32/44CR

| Diesel 4-stroke

| Marine propulsion, Electricity generation

| {{convert|172|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= https://marine.man.eu/docs/librariesprovider6/4-Stroke-Engines/2015-four-stroke-propulsion-engines.pdf |archive-url= https://web.archive.org/web/20160417234415/http://marine.man.eu/docs/librariesprovider6/4-Stroke-Engines/2015-four-stroke-propulsion-engines.pdf |url-status= dead |archive-date= 2016-04-17 |title= Four-Stroke Propulsion Engines |publisher= Man Diesel |date= 2015 }}

| {{#expr:3600/42.7/172*100round1}}%

style="background-color: Linen"

| {{convert|4,200|kW|hp|disp=table|sortable=on}}

| 2015

| Wärtsilä W31

| Diesel 4-stroke

|Marine propulsion, Electricity generation

| {{convert|165|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://www.wartsila.com/twentyfour7/in-detail/the-new-wartsila-31-engine |title= The new Wärtsilä 31 engine |work= Wärtsilä Technical Journal |date= 20 October 2015 }}

| {{#expr:3600/42.7/165*100round1}}%

style="background-color: Linen"

| {{convert|34,320|kW|hp|disp=table|sortable=on}}

| 1998

| Wärtsilä-Sulzer RTA96-C

| Diesel 2-stroke

| Marine propulsion, Electricity generation

| {{convert|160|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web|url=http://www.wartsila.com/Wartsila/docs/en/ship_power/media_publications/brochures/product/engines/rtac_tr.pdf |title=RTA-C Technology Review |publisher=Wärtsilä |date=2004 |url-status=dead |archive-url=https://web.archive.org/web/20051226062109/http://www.wartsila.com/Wartsila/docs/en/ship_power/media_publications/brochures/product/engines/rtac_tr.pdf |archive-date=December 26, 2005 }}

| {{#expr:3600/42.7/160*100round1}}%

style="background-color: Linen"

| {{convert|27,060|kW|hp|disp=table|sortable=on}}

|

| MAN Diesel S80ME-C9.4-TII

| Diesel 2-stroke

| Marine propulsion, Electricity generation

| {{convert|154.5|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= http://marine.man.eu/applications/projectguides/2stroke/content/printed/S80ME-C9_4.pdf |title= MAN B&W S80ME-C9.4-TII Project Guide |publisher= Man Diesel |date= May 2014 |access-date= 2016-06-15 |archive-date= 2016-08-09 |archive-url= https://web.archive.org/web/20160809092926/http://marine.man.eu/applications/projectguides/2stroke/content/printed/S80ME-C9_4.pdf |url-status= dead }}

| {{#expr:3600/42.7/154.5*100round1}}%

style="background-color: Linen"

| {{convert|34,350|kW|hp|disp=table|sortable=on}}

|

| MAN Diesel G95ME-C9

| Diesel 2-stroke

| Marine propulsion

| {{convert|154.5|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}}{{cite web |url= https://marine.man.eu/applications/projectguides/2stroke/content/printed/G95ME-C9_2.pdf |title= MAN B&W G95ME-C9.2-TII Project Guide |publisher= Man Diesel |date= May 2014 |page= 16}}

| {{#expr:3600/42.7/154.5*100round1}}%

{{convert|605,000|kW|hp|disp=table|sortable=on}}

| 2016

| General Electric 9HA

| Combined cycle gas turbine

| Electricity generation

| {{convert|{{#expr:3600/42.7/0.6222round1}}|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}} (eq.)

| 62.2%{{cite press release |url= http://www.gereports.com/bouchain/ |title= Here's Why The Latest Guinness World Record Will Keep France Lit Up Long After Soccer Fans Leave |author= Tomas Kellner |publisher= General Electric |date= 17 Jun 2016 |access-date= 14 April 2017 |archive-date= 16 June 2017 |archive-url= https://web.archive.org/web/20170616021542/http://www.gereports.com/bouchain/ |url-status= dead }}

{{convert|640,000|kW|hp|disp=table|sortable=on}}

| 2021

| General Electric 7HA.3

| Combined cycle gas turbine

| Electricity generation (proposed)

| {{convert|{{#expr:3600/42.7/0.639round1}}|g/kW.h|lb/hp.h|3|order=flip|disp=table|sortable=on}} (eq.)

| 63.9%{{cite web |url= https://www.powermag.com/ge-unveils-new-h-class-gas-turbine-and-already-has-a-first-order/ |title= GE Unveils New H-Class Gas Turbine—and Already Has a First Order |date= October 2, 2019}}

Turboprop efficiency is only good at high power; SFC increases dramatically for approach at low power (30% Pmax) and especially at idle (7% Pmax) :

class="wikitable"

|+ 2,050 kW Pratt & Whitney Canada PW127 turboprop (1996){{cite web |url= http://web.fc.fi/data/files/ATR_TheOptimumChoice.pdf |archive-url= https://web.archive.org/web/20160808173542/http://web.fc.fi/data/files/ATR_TheOptimumChoice.pdf |url-status= dead |archive-date= 2016-08-08 |title= ATR: The Optimum Choice for a Friendly Environment |page= PW127F engine gaseous emissions |publisher= Avions de Transport Regional |date= June 2001 }}

Mode

! Power

! fuel flow

! SFC

! Energy efficiency

Nominal idle (7%)

| {{convert|192|hp|kW|abbr=on}}

| {{convert|3.06|kg/min|lb/h|abbr=on}}

| {{convert|{{convert|{{#expr:3.06*60/192}}|kg/hp.h|g/kW.h|0|disp=number}}|g/kW.h|lb/hp.h|3|abbr=on}}

| {{#expr:3600/42.7/1282*100round1}}%

Approach (30%)

| {{convert|825|hp|kW|abbr=on}}

| {{convert|5.15|kg/min|lb/h|abbr=on}}

| {{convert|{{convert|{{#expr:5.15*60/825}}|kg/hp.h|g/kW.h|0|disp=number}}|g/kW.h|lb/hp.h|3|abbr=on}}

| {{#expr:3600/42.7/{{convert|{{#expr:5.15*60/825}}|kg/hp.h|g/kW.h|disp=number}}*100round1}}%

Max cruise (78%)

| {{convert|2,132|hp|kW|abbr=on}}

| {{convert|8.28|kg/min|lb/h|abbr=on}}

| {{convert|{{convert|{{#expr:8.28*60/2132}}|kg/hp.h|g/kW.h|0|disp=number}}|g/kW.h|lb/hp.h|3|abbr=on}}

| {{#expr:3600/42.7/{{convert|{{#expr:8.28*60/2132}}|kg/hp.h|g/kW.h|disp=number}}*100round1}}%

Max climb (80%)

| {{convert|2,192|hp|kW|abbr=on}}

| {{convert|8.38|kg/min|lb/h|abbr=on}}

| {{convert|{{convert|{{#expr:8.38*60/2192}}|kg/hp.h|g/kW.h|0|disp=number}}|g/kW.h|lb/hp.h|3|abbr=on}}

| {{#expr:3600/42.7/{{convert|{{#expr:8.38*60/2192}}|kg/hp.h|g/kW.h|disp=number}}*100round1}}%

Max contin. (90%)

| {{convert|2,475|hp|kW|abbr=on}}

| {{convert|9.22|kg/min|lb/h|abbr=on}}

| {{convert|{{convert|{{#expr:9.22*60/2475}}|kg/hp.h|g/kW.h|0|disp=number}}|g/kW.h|lb/hp.h|3|abbr=on}}

| {{#expr:3600/42.7/{{convert|{{#expr:9.22*60/2475}}|kg/hp.h|g/kW.h|disp=number}}*100round1}}%

Take-off (100%)

| {{convert|2,750 |hp|kW|abbr=on}}

| {{convert|9.9|kg/min|lb/h|abbr=on}}

| {{convert|{{convert|{{#expr:9.9*60/2750}}|kg/hp.h|g/kW.h|0|disp=number}}|g/kW.h|lb/hp.h|3|abbr=on}}

| {{#expr:3600/42.7/{{convert|{{#expr:9.9*60/2750}}|kg/hp.h|g/kW.h|disp=number}}*100round1}}%

See also

References

{{Reflist}}

Further reading

  • [https://web.archive.org/web/20070228154638/http://home.swipnet.se/~w-65189/reciprocating_engines/reciprocating_engine_types.htm Reciprocating engine types]
  • [http://auto.howstuffworks.com/engine.htm HowStuffWorks: How Car Engines Work]
  • [http://www.infoplease.com/ce6/sci/A0858857.html Reciprocating Engines] at infoplease
  • [https://web.archive.org/web/20081112051131/http://www.centennialofflight.gov/essay/Evolution_of_Technology/piston_engines/Tech23.htm Piston Engines] US Centennial of Flight Commission
  • [http://www.ias.ac.in/sadhana/Pdf2004Jun/Pe1131.pdf Effect of EGR] on the exhaust gas temperature and exhaust opacity in compression ignition engines
  • Heywood J B 1988 Pollutant formation and control. Internal combustion engine fundamentals Int. edn (New York: Mc-Graw Hill) pp 572–577
  • [https://web.archive.org/web/20120717085922/http://www.efcf.com/reports/E10.pdf Well-to-Wheel Studies, Heating Values, and the Energy Conservation Principle]
  • [http://ecomodder.com/wiki/index.php/Brake_Specific_Fuel_Consumption_%28BSFC%29_Maps Exemplary maps for commercial car engines collected by ecomodder forum users]

{{DEFAULTSORT:Brake Specific Fuel Consumption}}

Category:Fuel technology

Category:Energy efficiency

Category:Power (physics)