:Dimanganese decacarbonyl

{{chembox

| Reference =

| Verifiedfields = changed

| Watchedfields = changed

| verifiedrevid = 427460022

| Name = Dimanganese decacarbonyl

| ImageFile = Mn2(CO)10.svg

| ImageSize =

| ImageName = Dimanganese decacarbonyl

| ImageFile1 = Dimanganese-decacarbonyl-3D-balls.png

| IUPACName = bis(pentacarbonylmanganese)(MnMn)

| OtherNames = Manganese carbonyl
Decacarbonyldimanganese

| Section1 = {{Chembox Identifiers

| CASNo_Ref = {{cascite|correct|CAS}}

| CASNo = 10170-69-1

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 451751

| EC_number = 233-445-6

| RTECS =

| PubChem = 6096972

| UNII_Ref = {{fdacite|correct|FDA}}

| UNII = 85SI7K7FWW

| InChI = 1/10CO.2Mn/c10*1-2;;

| InChIKey = QFEOTYVTTQCYAZ-UHFFFAOYAD

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChI = 1S/10CO.2Mn/c10*1-2;;

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = QFEOTYVTTQCYAZ-UHFFFAOYSA-N

| SMILES = O=C=[Mn](=C=O)(=C=O)(=C=O)(=C=O)[Mn](=C=O)(=C=O)(=C=O)(=C=O)=C=O

}}

| Section2 = {{Chembox Properties

| Formula = Mn2(CO)10

| MolarMass = 389.98 g/mol

| Appearance = Yellow crystals

| Density = 1.750 g/cm3

| Solubility = Insoluble

| MeltingPtC = 154

| BoilingPt= sublimes

| BoilingPtC = 60

| BoilingPt_notes = at 0.5 mm Hg

}}

| Section3 = {{Chembox Structure

| Structure_ref = {{cite journal |last1=Melvyn Rowen Churchill, Kwame N. Amoh, and Harvey J. Wasserman |title=Redetermination of the crystal structure of dimanganese decacarbonyl and determination of the crystal structure of dirhenium decacarbonyl. Revised values for the manganese-manganese and rhenium-rhenium bond lengths in dimanganese decacarbonyl and dirhenium decacarbonyl |journal=Inorg. Chem. |year=1981 |volume=20 |issue=5 |pages=1609–1611 |doi=10.1021/ic50219a056 |url=https://pubs.acs.org/doi/10.1021/ic50219a056 |url-access=subscription }}

| CrystalStruct = monoclinic

| LattConst_a = 14.14 Å

| LattConst_b = 7.10 Å

| LattConst_c = 14.63 Å

| LattConst_beta = 105.2

| UnitCellFormulas = 4

| Dipole = 0 D

}}

| Section7 = {{Chembox Hazards

| ExternalSDS =

| MainHazards = CO source

| GHS_ref={{cite web |title=Decacarbonyldimanganese |url=https://pubchem.ncbi.nlm.nih.gov/compound/517769#section=Safety-and-Hazards |website=pubchem.ncbi.nlm.nih.gov |access-date=27 December 2021 |language=en}}

| GHSPictograms = {{GHS06}}

| GHSSignalWord = Danger

| HPhrases = {{H-phrases|301|311|331}}

| PPhrases = {{P-phrases|261|264|270|271|280|301+310|302+352|304+340|311|312|321|322|330|361|363|403+233|405|501}}

}}

| Section8 = {{Chembox Related

| OtherFunction_label = compounds

| OtherFunction = Re2(CO)10
Co2(CO)8
Fe3(CO)12
Fe2(CO)9

}}

}}

Dimanganese decacarbonyl,{{Citation |last1=Pauson |first1=Peter L. |title=Decacarbonyldimanganese |date=2009-09-15 |url=https://onlinelibrary.wiley.com/doi/10.1002/047084289X.rd001.pub2 |encyclopedia=Encyclopedia of Reagents for Organic Synthesis |pages=rd001.pub2 |editor-last=John Wiley & Sons, Ltd |access-date=2023-03-12 |place=Chichester, UK |publisher=John Wiley & Sons, Ltd |language=en |doi=10.1002/047084289x.rd001.pub2 |isbn=978-0-471-93623-7 |last2=Friestad |first2=Gregory K.|url-access=subscription }} which has the chemical formula Mn2(CO)10, is a binary bimetallic carbonyl complex centered around the first row transition metal manganese. The first reported synthesis of Mn2(CO)10 was in 1954 at Linde Air Products Company and was performed by Brimm, Lynch, and Sesny.{{Cite journal |last1=Brimm |first1=E. O. |last2=Lynch |first2=M. A. |last3=Sesny |first3=W. J. |date=July 1954 |title=Preparation and Properties of Manganese Carbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ja01643a071 |journal=Journal of the American Chemical Society |language=en |volume=76 |issue=14 |pages=3831–3835 |doi=10.1021/ja01643a071 |bibcode=1954JAChS..76.3831B |issn=0002-7863|url-access=subscription }} Their hypothesis about, and synthesis of, dimanganese decacarbonyl was fundamentally guided by the previously known dirhenium decacarbonyl (Re2(CO)10), the heavy atom analogue of Mn2(CO)10. Since its first synthesis, Mn2(CO)10 has been use sparingly as a reagent in the synthesis of other chemical species, but has found the most use as a simple system on which to study fundamental chemical and physical phenomena, most notably, the metal-metal bond. Dimanganese decacarbonyl is also used as a classic example to reinforce fundamental topics in organometallic chemistry like d-electron count, the 18-electron rule, oxidation state, valency,{{Cite journal |last=Parkin |first=Gerard |date=May 2006 |title=Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts |url=https://pubs.acs.org/doi/abs/10.1021/ed083p791 |journal=Journal of Chemical Education |language=en |volume=83 |issue=5 |pages=791 |doi=10.1021/ed083p791 |bibcode=2006JChEd..83..791P |issn=0021-9584|url-access=subscription }} and the isolobal analogy.

Synthesis

Many procedures have been reported for the synthesis of Mn2(CO)10 since 1954. Some of these methods serendipitously produce Mn2(CO)10.

= Reduction/carbonylation syntheses =

The carbonylation route involves treatment of Mn(II) salt under high pressure of CO and in the presence of a reductant. This is the method reported in 1954 by Brimm, Lynch, and Sesny, albeit in yields of ~1%. They used manganese(II) iodide with magnesium(0) as the reductant under 3000 psi (~200 atm) of carbon monoxide (CO):

:{{chem2|2 MnI2 + 2 Mg + 10 CO -> Mn2(CO)10 + 2 MgI2}}

A more efficient preparation was developed in 1958 and entails reduction of anhydrous manganese(II) chloride with sodium benzophenone ketyl radical under similarly high pressures (200 atm) of CO.{{Cite journal |last1=Closson |first1=Rex D. |last2=Buzbee |first2=Lloyd R. |last3=Ecke |first3=George G. |date=December 1958 |title=A New Metal Carbonyl Synthesis 1 |url=https://pubs.acs.org/doi/abs/10.1021/ja01556a005 |journal=Journal of the American Chemical Society |language=en |volume=80 |issue=23 |pages=6167–6170 |doi=10.1021/ja01556a005 |bibcode=1958JAChS..80.6167C |issn=0002-7863|url-access=subscription }} The yield is ~32%.

File:Mn2(CO)10CarbonylationSynth.png

== Low pressure carbonylation ==

An ambient pressure synthesis of Mn2(CO)10 was reported from the commercially available and inexpensive methylcyclopentadienyl manganese tricarbonyl (MMT) and sodium(0) as the reductant.{{Cite journal |last1=King |first1=R. B. |last2=Stokes |first2=J. C. |last3=Korenowski |first3=T. F. |date=1968-01-01 |title=A Convenient Synthesis of Dimanganese Decarbonyl from Inexpensive Starting Materials at Atmospheric Pressure |url=https://dx.doi.org/10.1016/0022-328X%2868%2980099-3 |journal=Journal of Organometallic Chemistry |language=en |volume=11 |pages=641–643 |doi=10.1016/0022-328X(68)80099-3 |issn=0022-328X|url-access=subscription }} The balanced equation being:

:{{chem2|2 Mn(\h{1}(5)\s(CH3C5H4)(CO)3 + 2 Na + 4 CO -> Mn2(CO)10 + 2NaCH3C5H4}}

The efficiency of the method ranged from 16 to 20% yield, lower than what was previously reported, however, it could be performed more conveniently and on mole scale.

= Dimerization syntheses =

Pentacarbonylhydridomanganese(-I) Mn source, oxidized by Se(PF2)2:{{Cite journal |last1=Arnold |first1=David E. J. |last2=Cromie |first2=Ernest R. |last3=Rankin |first3=David W. H. |date=1977 |title=Preparation and chemical and spectroscopic properties of bis(difluorophosphino) selenide |url=http://xlink.rsc.org/?DOI=dt9770001999 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=20 |pages=1999–2004 |doi=10.1039/dt9770001999 |issn=0300-9246|url-access=subscription }} 2 Mn(CO)5(H) + Se(PF2)2 -> Mn2(CO)10 + PF2H + Se=PF2H Other terminal oxidants achieve the same effect,{{Cite journal |last1=Sweany |first1=Ray |last2=Butler |first2=Steven C. |last3=Halpern |first3=Jack |date=1981-06-23 |title=The hydrogenation of 9,10-dimethylanthracene by hydridopentacarbonylmanganese(I). Evidence for a free-radical mechanism |url=https://www.sciencedirect.com/science/article/pii/S0022328X0082954X |journal=Journal of Organometallic Chemistry |language=en |volume=213 |issue=2 |pages=487–492 |doi=10.1016/S0022-328X(00)82954-X |issn=0022-328X|url-access=subscription }}{{Cite journal |last1=Booth |first1=Brian L. |last2=Haszeldine |first2=Robert N. |last3=Holmes |first3=Robert G. G. |date=1982 |title=Reactions involving transition metals. Part 16. Rhodium, iridium, platinum, and gold complexes containing the bis(trifluoromethyl)amino-oxy-ligand |url=http://xlink.rsc.org/?DOI=dt9820000523 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=3 |pages=523–529 |doi=10.1039/dt9820000523 |issn=0300-9246|url-access=subscription }}{{Cite journal |last1=Tam |first1=Wilson |last2=Marsi |first2=Marianne |last3=Gladysz |first3=J. A. |date=May 1983 |title=Bimetallic anionic formyl complexes: synthesis and properties |url=https://pubs.acs.org/doi/abs/10.1021/ic00152a001 |journal=Inorganic Chemistry |language=en |volume=22 |issue=10 |pages=1413–1421 |doi=10.1021/ic00152a001 |issn=0020-1669|url-access=subscription }} and stable pentacarbonylmanganate (Mn(CO){{su|b=5|p=−}}) salts can substitute for the hydride.{{Cite journal |last1=DuBois |first1=Donn A. |last2=Duesler |first2=Eileen N. |last3=Paine |first3=Robert T. |date=January 1985 |title=Formation and x-ray crystal structure determination of an unusual phosphorus-phosphorus coupled bicyclodiphosphazane complex |url=https://pubs.acs.org/doi/abs/10.1021/ic00195a003 |journal=Inorganic Chemistry |language=en |volume=24 |issue=1 |pages=3–5 |doi=10.1021/ic00195a003 |issn=0020-1669|url-access=subscription }}{{Cite journal |last1=Ozin |first1=Geoffrey A. |last2=Coleson |first2=Kraig M. |last3=Huber |first3=Helmut X. |date=March 1983 |title=Reactions of solvated metal atoms with organometallic complexes in solution. A metal atom microsolution spectroscopic and synthetic study of the reaction pathways available to singly metal-metal bonded organometallic complexes and their organometallic anions |url=https://pubs.acs.org/doi/abs/10.1021/om00075a011 |journal=Organometallics |language=en |volume=2 |issue=3 |pages=415–420 |doi=10.1021/om00075a011 |issn=0276-7333|url-access=subscription }}{{Cite journal |last1=Müller |first1=Manfred |last2=Vahrenkamp |first2=Heinrich |date=June 1983 |title=Cluster-Konstruktion: Schrittweiser Aufbau von μ 3 -RP-Trimetall-Clustern über P–Hal-Verbindungen |url=https://onlinelibrary.wiley.com/doi/10.1002/cber.19831160621 |journal=Chemische Berichte |language=en |volume=116 |issue=6 |pages=2322–2336 |doi=10.1002/cber.19831160621 |issn=0009-2940|url-access=subscription }} Thus for example triphenylcyclopropenium tetrafluoroborate reacts with sodium pentacarbonyl manganate to produce the dimer of each:{{Cite journal |last1=Hughes |first1=Russell P. |last2=Lambert |first2=James M. J. |last3=Reisch |first3=John W. |last4=Smith |first4=Wayne L. |date=October 1982 |title=Reinvestigations of some reactions of metal carbonyl anions with cyclopropenium cations. Conversion of .eta.3-cyclopropenyl to .eta.3-cyclobutenonyl ligands |url=https://pubs.acs.org/doi/abs/10.1021/om00070a027 |journal=Organometallics |language=en |volume=1 |issue=10 |pages=1403–1405 |doi=10.1021/om00070a027 |issn=0276-7333|url-access=subscription }}

File:Mn2(CO)10OxidationSynth.png

Similar methods exist for Mn(CO)5X compounds where X = Cl, Br, or I; and, more rarely, for Mn(CO){{su|b=6|p=+}} bound with a weakly coordinating anion.{{Cite journal |last1=Kolthammer |first1=Brian W. S. |last2=Legzdins |first2=Peter |date=1978 |title=Organometallic nitrosyl chemistry. Part 3. Some aspects of the chemistry of bis[(η-cyclopentadienyl)dinitrosylchromium] |url=http://xlink.rsc.org/?DOI=DT9780000031 |journal=J. Chem. Soc., Dalton Trans. |language=en |issue=1 |pages=31–35 |doi=10.1039/DT9780000031 |issn=0300-9246|url-access=subscription }}{{Cite journal |last1=Manning |first1=Mark C. |last2=Trogler |first2=William C. |date=1981-01-01 |title=Reduction of metal carbonyls with alkali metal carbides |url=https://www.sciencedirect.com/science/article/pii/S0020169300837524 |journal=Inorganica Chimica Acta |language=en |volume=50 |pages=247–250 |doi=10.1016/S0020-1693(00)83752-4 |issn=0020-1693|url-access=subscription }}{{Cite journal |last1=Gibson |first1=Dorothy H. |last2=Hsu |first2=Wen-Liang |date=1982-01-01 |title=Reactions of manganese carbonyls with quaternary ammonium halides |url=https://www.sciencedirect.com/science/article/pii/S0020169300873144 |journal=Inorganica Chimica Acta |language=en |volume=59 |pages=93–99 |doi=10.1016/S0020-1693(00)87314-4 |issn=0020-1693|url-access=subscription }}{{Cite journal |last1=Kuchynka |first1=D. J. |last2=Amatore |first2=C. |last3=Kochi |first3=J. K. |date=November 1986 |title=Manganese(0) radicals and the reduction of cationic carbonyl complexes: selectivity in the ligand dissociation from 19-electron species |url=https://pubs.acs.org/doi/abs/10.1021/ic00243a009 |journal=Inorganic Chemistry |language=en |volume=25 |issue=23 |pages=4087–4097 |doi=10.1021/ic00243a009 |issn=0020-1669|url-access=subscription }}{{Cite journal |last1=Geier |first1=Jens |last2=Willner |first2=Helge |last3=Lehmann |first3=Christian W. |last4=Aubke |first4=Friedhelm |date=2007-08-01 |title=Formation of Hexacarbonylmanganese(I) Salts, [Mn(CO) 6 ] + X - , in Anhydrous HF |url=https://pubs.acs.org/doi/10.1021/ic700798z |journal=Inorganic Chemistry |language=en |volume=46 |issue=17 |pages=7210–7214 |doi=10.1021/ic700798z |pmid=17616186 |issn=0020-1669|url-access=subscription }}{{Cite journal |last1=Manning |first1=Peter J. |last2=Peterson |first2=Louis K. |last3=Wada |first3=Fumio |last4=Dhami |first4=Randi S. |date=1986-04-01 |title=Synthesis and reactions of [M(CO)4(Ph2PSiMe3)X] complexes (M = Mn, Re; X = Halogen) |url=https://www.sciencedirect.com/science/article/pii/S0020169300845818 |journal=Inorganica Chimica Acta |language=en |volume=114 |issue=1 |pages=15–20 |doi=10.1016/S0020-1693(00)84581-8 |issn=0020-1693|url-access=subscription }}

One additional interesting synthesis of Mn2(CO)10 occurs by combination of a hexacarbonylmanganese(I) tetrafluoroborate salt with a sodium pentacarbonyl manganate salt. In this instance, manganese is both the oxidant and reductant, producing two formal Mn(0) atoms:{{Cite journal |last1=Lee |first1=K. Y. |last2=Kuchynka |first2=D. J. |last3=Kochi |first3=J. K. |date=1987-09-01 |title=Formation of metal-metal bonds by ion-pair annihilation. Dimanganese carbonyls from manganate(I-) anions and manganese(I) cations |url=https://pubs.acs.org/doi/abs/10.1021/om00152a010 |journal=Organometallics |language=en |volume=6 |issue=9 |pages=1886–1897 |doi=10.1021/om00152a010 |issn=0276-7333|url-access=subscription }}

[Mn(CO)6](BF4) + Na[Mn(CO)5] -> Mn2(CO)10 + Na[BF4] + CO

Structure and bonding

This hypothesized structure was confirmed explicitly through x-ray diffraction studies, first in two dimensions in 1957,{{Cite journal |last1=Dahl |first1=Lawrence F. |last2=Ishishi |first2=Etsuro |last3=Rundle |first3=R. E. |date=2004-10-06 |title=Polynuclear Metal Carbonyls. I. Structures of Mn2(CO)10 and Re2(CO)10 |url=https://aip.scitation.org/doi/abs/10.1063/1.1743615 |journal=The Journal of Chemical Physics |language=en |volume=26 |issue=6 |pages=1750 |doi=10.1063/1.1743615 |issn=0021-9606|url-access=subscription }} followed by its single crystal three-dimensional analysis in 1963.{{Cite journal |last1=Dahl |first1=L. F. |last2=Rundle |first2=R. E. |date=1963-05-10 |title=The crystal structure of dimanganese decacarbonyl Mn2(CO)10 |url=https://scripts.iucr.org/cgi-bin/paper?a03815 |journal=Acta Crystallographica |language=en |volume=16 |issue=5 |pages=419–426 |doi=10.1107/S0365110X63001080 |bibcode=1963AcCry..16..419D |issn=0365-110X|url-access=subscription }} The crystal structure of Mn2(CO)10 was redetermined at high precision at room temperature in 1981 and bond lengths mentioned herein refer to results from that study.{{Cite journal |last1=Churchill |first1=Melvyn Rowen |last2=Amoh |first2=Kwame N. |last3=Wasserman |first3=Harvey J. |date=May 1981 |title=Redetermination of the crystal structure of dimanganese decacarbonyl and determination of the crystal structure of dirhenium decacarbonyl. Revised values for the manganese-manganese and rhenium-rhenium bond lengths in dimanganese decacarbonyl and dirhenium decacarbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ic50219a056 |journal=Inorganic Chemistry |language=en |volume=20 |issue=5 |pages=1609–1611 |doi=10.1021/ic50219a056 |issn=0020-1669|url-access=subscription }} Mn2(CO)10 has no bridging CO ligands: it can be described as containing two axially-linked (CO)5Mn- subunits. These Mn subunits are spaced at a distance of 290.38(6) pm, a bonding distance that is longer than that predicted.{{Cite journal |last=Pyykkö |first=Pekka |date=2015-03-19 |title=Additive Covalent Radii for Single-, Double-, and Triple-Bonded Molecules and Tetrahedrally Bonded Crystals: A Summary |url=https://pubs.acs.org/doi/10.1021/jp5065819 |journal=The Journal of Physical Chemistry A |language=en |volume=119 |issue=11 |pages=2326–2337 |doi=10.1021/jp5065819 |pmid=25162610 |bibcode=2015JPCA..119.2326P |issn=1089-5639|url-access=subscription }} Two CO ligands are linked to each Mn atom that is coaxial with the Mn-Mn bond and four “equatorial” carbonyls bonded to each Mn atom that are nearly perpendicular to the Mn-Mn bond (Mn’-Mn-CO(equatorial) angles range from 84.61(7) to 89.16(7) degrees). The axial carbonyl distance of (181.1 pm) is 4.5 pm shorter than the average equatorial manganese-carbonyl distance of 185.6 pm. In the stable rotamer, the two Mn(CO)5 subunits are staggered. Thus, the overall molecule has approximate point group D4d symmetry, which is an uncommon symmetry shared with S2F10. The Mn2(CO)10 molecule is isomorphous with the other group 7 binary metal carbonyls Tc2(CO)10 and Re2(CO)10.

File:Mn2(CO)10Geometry.png

= Electronic structure =

Initial fundamental experimental and theoretical studies on the electronic structure of Mn2(CO)10 were performed used a mixture of photoelectron spectroscopy, infrared spectroscopy, and an iterative extended-Hückel-type molecular orbital calculation.{{Cite journal |last1=Levenson |first1=Robert A. |last2=Gray |first2=Harry B. |last3=Ceasar |first3=Gerald P. |date=June 1970 |title=Electronic and vibrational spectroscopy in a nematic liquid crystal solvent. Band polarizations of binuclear metal carbonyls |url=https://pubs.acs.org/doi/abs/10.1021/ja00715a018 |journal=Journal of the American Chemical Society |language=en |volume=92 |issue=12 |pages=3653–3658 |doi=10.1021/ja00715a018 |bibcode=1970JAChS..92.3653L |issn=0002-7863|url-access=subscription }}{{Cite journal |last1=Levenson |first1=Robert A. |last2=Gray |first2=Harry B. |date=October 1975 |title=Electronic structure of compounds containing metal-metal bonds. Decacarbonyldimetal and related complexes |url=https://pubs.acs.org/doi/abs/10.1021/ja00854a015 |journal=Journal of the American Chemical Society |language=en |volume=97 |issue=21 |pages=6042–6047 |doi=10.1021/ja00854a015 |bibcode=1975JAChS..97.6042L |issn=0002-7863|url-access=subscription }} The electronic structure of Mn2(CO)10 was most reported in 2017 using the BP86D functional with TZP basis set.{{Cite journal |last1=Menacer |first1=Rafik |last2=May |first2=Abdelghani |last3=Belkhiri |first3=Lotfi |last4=Mousser |first4=Abdelhamid |date=2017-11-28 |title=Electronic structure and bonding of the dinuclear metal M2(CO)10 decacarbonyls: applications of natural orbitals for chemical valence |url=https://doi.org/10.1007/s00894-017-3523-5 |journal=Journal of Molecular Modeling |language=en |volume=23 |issue=12 |pages=358 |doi=10.1007/s00894-017-3523-5 |pmid=29185066 |s2cid=3814626 |issn=0948-5023|url-access=subscription }} The electronic structure described herein, along with relevant orbital plots, are reproduced from the methods used in that study using Orca (5.0.3){{Cite journal |last=Neese |first=Frank |date=January 2012 |title=The ORCA program system |url=https://onlinelibrary.wiley.com/doi/10.1002/wcms.81 |journal=WIREs Computational Molecular Science |language=en |volume=2 |issue=1 |pages=73–78 |doi=10.1002/wcms.81 |s2cid=62137389 |issn=1759-0876|url-access=subscription }} and visualized using IBOView (v20150427).{{Cite journal |last=Knizia |first=Gerald |date=2013-11-12 |title=Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts |url=https://pubs.acs.org/doi/10.1021/ct400687b |journal=Journal of Chemical Theory and Computation |language=en |volume=9 |issue=11 |pages=4834–4843 |doi=10.1021/ct400687b |pmid=26583402 |arxiv=1306.6884 |s2cid=17717923 |issn=1549-9618}} The two main interactions of interest in the system are the metal-to-ligand pi-backbonding interactions and the metal-metal sigma bonding orbital. The pi-backbonding interactions illustrated below occur between the t2g d-orbital set and the CO π* antibonding orbitals. The degenerate dxz and dyz backbonding interactions with both axial and equatorial CO ligands is the HOMO-15. More total delocalization occurs onto the axial CO antibonding orbital than does the equatorial, which is thought to rationalize the shorter Mn-C bond length. The primary Mn-Mn σ-bonding orbital is composed of two dz2 orbitals, represented by the HOMO-9.

Other large contributions made in this area were by Ahmed Zewail using ultrafast, femtosecond spectroscopy en route to his 1999 Nobel Prize.{{Citation |last=Zewail |first=Ahmed H. |title=Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers (Nobel Lecture) |url=http://dx.doi.org/10.1002/3527600183.ch1 |work=Femtochemistry |year=2001 |pages=1–85 |access-date=2023-03-13 |place=Weinheim, FRG |publisher=Wiley-VCH Verlag GmbH|doi=10.1002/3527600183.ch1 |isbn=352730259X |url-access=subscription }} His discoveries elucidated much about the time scales and energies associated with the molecular motions of Mn2(CO)10, as well as the Mn-Mn and Mn-C bond cleavage events.{{Cite journal |last1=Kyu Kim |first1=Sang |last2=Pedersen |first2=Soren |last3=Zewail |first3=Ahmed H. |date=1995-02-24 |title=Femtochemistry of organometallics: dynamics of metal-metal and metal-ligand bond cleavage in M2(CO)10 |url=https://dx.doi.org/10.1016/0009-2614%2895%2900050-E |journal=Chemical Physics Letters |language=en |volume=233 |issue=5 |pages=500–508 |doi=10.1016/0009-2614(95)00050-E |bibcode=1995CPL...233..500K |issn=0009-2614|url-access=subscription }}

Reactivity

Mn2(CO)10 is air stable as a crystalline solid, but solutions require Schlenk techniques. Mn2(CO)10 is chemically active at both the Mn-Mn and Mn-CO bonds due to low, and similar, bond dissociation energies of ~36 kcal/mol (151 kJ/mol){{Cite journal |last1=Hughey |first1=Joseph L. |last2=Anderson |first2=Craig P. |last3=Meyer |first3=Thomas J. |date=1977-02-01 |title=Photochemistry of Mn2(CO)10 |url=https://www.sciencedirect.com/science/article/pii/S0022328X00894553 |journal=Journal of Organometallic Chemistry |language=en |volume=125 |issue=2 |pages=C49–C52 |doi=10.1016/S0022-328X(00)89455-3 |issn=0022-328X|url-access=subscription }} and ~38 kcal/mol (160 kJ/mol),{{Cite journal |last=Smith |first=G. P. |date=1988-01-01 |title=Gas-phase first bond dissociation energies in transition-metal carbonyls |url=https://www.sciencedirect.com/science/article/pii/S0277538700817854 |journal=Polyhedron |language=en |volume=7 |issue=16 |pages=1605–1608 |doi=10.1016/S0277-5387(00)81785-4 |issn=0277-5387|url-access=subscription }} respectively. For this reason, reactivity can happen at either site of the molecule, sometimes selectively.

= Mn-Mn bond cleavage reactions =

The Mn-Mn bond is sensitive to both oxidation and reduction, producing two equivalents of the corresponding Mn(I) and Mn(-I) species, respectively. Both of the potential resultant species can be derived further. Redox neutral cleavage is possible both thermally and photochemically, producing two equivalents of the Mn(0) radical.

== Oxidative cleavage ==

Selective mono-oxidation of the Mn-Mn bond is most often done via addition of classical metal oxidants (e.g. CeIV, PbIV, etc) or weak homonuclear single covalent bonds of the form X-X (X is group 16 or 17 element).{{Cite journal |last1=Davidson |first1=J. L. |last2=Sharp |first2=D. W. A. |date=1973-01-01 |title=Metal perfluoro-alkyl- and -aryl-thiolates. Part II. Molybdenum, tungsten, manganese, iron, and nickel derivatives |url=https://pubs.rsc.org/en/content/articlelanding/1973/dt/dt9730001957 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=19 |pages=1957–1960 |doi=10.1039/DT9730001957 |issn=1364-5447|url-access=subscription }}{{Cite journal |last1=Chaudhuri |first1=M. K. |last2=Haas |first2=A. |last3=Wensky |first3=A. |date=1976-08-24 |title=Photoinduced reactions of (CF3S)3N and CF3SeSeCF3 with Mn2(CO)10 and Fe(CO)5 |url=https://www.sciencedirect.com/science/article/pii/S0022328X00944693 |journal=Journal of Organometallic Chemistry |language=en |volume=116 |issue=3 |pages=323–326 |doi=10.1016/S0022-328X(00)94469-3 |issn=0022-328X|url-access=subscription }}{{Cite journal |last1=Arsenault |first1=Clément |last2=Bougeard |first2=Peter |last3=Sayer |first3=Brian G. |last4=Yeroushalmi |first4=Shahin |last5=McGlinchey |first5=Michael J. |date=1984-04-17 |title=[η5-1,2,3,4,5-pentakis(carbomethoxy)cyclopentadienyl]tricarbonylmanganese(I): Synthesis, spectroscopy and reactivity |url=https://dx.doi.org/10.1016/0022-328X%2884%2980092-3 |journal=Journal of Organometallic Chemistry |language=en |volume=265 |issue=3 |pages=283–290 |doi=10.1016/0022-328X(84)80092-3 |issn=0022-328X|url-access=subscription }}{{Cite journal |last1=Schmidt |first1=Steven P. |last2=Trogler |first2=William C. |last3=Basolo |first3=Fred |date=March 1984 |title=Mechanism of halogenation of dimanganese, manganese-rhenium, and dirhenium decacarbonyls |url=https://pubs.acs.org/doi/abs/10.1021/ja00317a023 |journal=Journal of the American Chemical Society |language=en |volume=106 |issue=5 |pages=1308–1313 |doi=10.1021/ja00317a023 |bibcode=1984JAChS.106.1308S |issn=0002-7863|url-access=subscription }}{{Cite journal |last1=Hernández |first1=José G. |last2=Butler |first2=Ian S. |last3=Friščić |first3=Tomislav |date=2014-06-16 |title=Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions |url=http://xlink.rsc.org/?DOI=C4SC01252F |journal=Chemical Science |language=en |volume=5 |issue=9 |pages=3576 |doi=10.1039/C4SC01252F |issn=2041-6520|url-access=subscription }} These reactions yield the [Mn(CO)5]+ cation with a bound weakly coordinating anion, or the Mn(CO)5X complex. The general reaction schemes for each are seen as balanced equations below:Mn2(CO)10 + 2 M^{n}X_{n} -> 2Mn(CO)5X + 2M^{(n-1)}X_{(n-1)}or for two-electron oxidantsMn2(CO)10 + M^{n}X_{n} -> 2Mn(CO)5X + M^{(n-2)}X_{(n-2)}andMn2(CO)10 + RE-ER -> 2Mn(CO)5(ER)for E = O, S, Se, TeMn2(CO)10 + X-X -> 2Mn(CO)5Xfor X = F, Cl, Br, I

== Reductive cleavage ==

Reductive cleavage is almost always done with sodium metal,{{Cite journal |last1=Warnock |first1=Garry F. P. |last2=Moodie |first2=Lyn Cammarano |last3=Ellis |first3=John E. |date=March 1989 |title=Highly reduced organometallics. Part 25. Reactions of trisodium tetracarbonylmetalates(3-) of manganese and rhenium with Broensted acids and other electrophiles. Synthesis of H2M(CO)4- (M = Mn and Re), (CH3)2Re(CO)4-, the first dialkyl derivative of a carbonylmetalate trianion, and related anionic species |url=https://pubs.acs.org/doi/abs/10.1021/ja00188a029 |journal=Journal of the American Chemical Society |language=en |volume=111 |issue=6 |pages=2131–2141 |doi=10.1021/ja00188a029 |bibcode=1989JAChS.111.2131W |issn=0002-7863|url-access=subscription }}{{Cite journal |last1=Kuchynka |first1=D. J. |last2=Kochi |first2=J. K. |date=March 1989 |title=Equilibrium of 17-electron and 19-electron organometallic radicals derived from carbonylmanganese anions and cations |url=https://pubs.acs.org/doi/abs/10.1021/ic00304a012 |journal=Inorganic Chemistry |language=en |volume=28 |issue=5 |pages=855–863 |doi=10.1021/ic00304a012 |issn=0020-1669|url-access=subscription }} yielding the [Mn(CO)5] anion with the sodium counterion. The balanced general reactions are given below:Mn2(CO)10 + 2 Na^{0} -> 2Na[Mn(CO)5]The resultant manganate anion is a potent nucleophile, which can be protonated to give the manganese hydride,{{Cite journal |last1=Nappa |first1=Mario J. |last2=Santi |first2=Roberto |last3=Halpern |first3=Jack |date=January 1985 |title=Mechanisms of the carbon-hydrogen bond-forming binuclear reductive elimination reactions of benzyl- and hydridomanganese carbonyls |url=https://pubs.acs.org/doi/abs/10.1021/om00120a007 |journal=Organometallics |language=en |volume=4 |issue=1 |pages=34–41 |doi=10.1021/om00120a007 |issn=0276-7333|url-access=subscription }}{{Cite journal |last1=Wassink |first1=Berend |last2=Thomas |first2=Marian J. |last3=Wright |first3=Steven C. |last4=Gillis |first4=Daniel J. |last5=Baird |first5=Michael C. |date=April 1987 |title=Mechanisms of the hydrometalation (insertion) and stoichiometric hydrogenation reactions of conjugated dienes effected by manganese pentacarbonyl hydride: processes involving the radical pair mechanism |url=https://pubs.acs.org/doi/abs/10.1021/ja00241a016 |journal=Journal of the American Chemical Society |language=en |volume=109 |issue=7 |pages=1995–2002 |doi=10.1021/ja00241a016 |bibcode=1987JAChS.109.1995W |issn=0002-7863|url-access=subscription }} or alkylated with organic halides{{Cite journal |last1=Casey |first1=Charles P. |last2=Scheck |first2=Daniel M. |date=April 1980 |title=Mechanism of reductive elimination of acetophenone from Me4+[cis-(CO)4Mn(COMe)(COPh)]- |url=https://pubs.acs.org/doi/abs/10.1021/ja00528a034 |journal=Journal of the American Chemical Society |language=en |volume=102 |issue=8 |pages=2728–2731 |doi=10.1021/ja00528a034 |bibcode=1980JAChS.102.2728C |issn=0002-7863|url-access=subscription }}{{Cite journal |last1=Benson |first1=Ian B. |last2=Hunt |first2=James |last3=Knox |first3=Selby A. R. |last4=Oliphant |first4=Valerie |date=1978 |title=Organosulphur–transition-metal chemistry. Part 1. Reactions of carbon disulphide with metal carbonyl anions |url=http://xlink.rsc.org/?DOI=DT9780001240 |journal=J. Chem. Soc., Dalton Trans. |language=en |issue=10 |pages=1240–1246 |doi=10.1039/DT9780001240 |issn=0300-9246|url-access=subscription }} to give a large swath of organomanganese(I) complexes.

Further reduction gives Na3Mn(CO)4.{{Cite journal |last=Ellis |first=John E. |date=2006-04-17 |title=Adventures with Substances Containing Metals in Negative Oxidation States |url=https://pubs.acs.org/doi/10.1021/ic052110i |journal=Inorganic Chemistry |language=en |volume=45 |issue=8 |pages=3175–3176 |doi=10.1021/ic052110i |issn=0020-1669}}

== Redox-neutral cleavage ==

Homolytic cleavage, usually via light,{{Cite journal |last1=Herrick |first1=Richard S. |last2=Brown |first2=Theodore L. |date=December 1984 |title=Flash photolytic investigation of photoinduced carbon monoxide dissociation from dinuclear manganese carbonyl compounds |url=https://pubs.acs.org/doi/abs/10.1021/ic00194a028 |journal=Inorganic Chemistry |language=en |volume=23 |issue=26 |pages=4550–4553 |doi=10.1021/ic00194a028 |issn=0020-1669|url-access=subscription }} but sometimes heat,{{Cite journal |last1=Wegman |first1=R. W. |last2=Olsen |first2=R. J. |last3=Gard |first3=D. R. |last4=Faulkner |first4=L. R. |last5=Brown |first5=Theodore L. |date=October 1981 |title=Flash photolysis study of the metal-metal bond homolysis in dimanganese decacarbonyl and dirhenium decacarbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ja00410a017 |journal=Journal of the American Chemical Society |language=en |volume=103 |issue=20 |pages=6089–6092 |doi=10.1021/ja00410a017 |bibcode=1981JAChS.103.6089W |issn=0002-7863|url-access=subscription }} gives the Mn(0) metalloradical, which can react with itself to reform Mn2(CO)10, or combine with other radical species that usually result in formal oxidation to Mn(I). This reactivity is comparable to that of organic, carbon-based radicals via the isolobal analogy. The homolytic cleavage is given by:Mn2(CO)10 + h\nu -> 2[Mn(CO)5]^{.}The use of the produced radical species, [Mn(CO)5]*, has found several applications as a radical initiator for various organic methodologies{{Cite journal |last1=Gilbert |first1=Bruce C. |last2=Kalz |first2=Wilhelm |last3=Lindsay |first3=Chris I. |last4=McGrail |first4=P. Terry |last5=Parsons |first5=Andrew F. |last6=Whittaker |first6=David T. E. |date=1999-08-13 |title=Radical cyclisations promoted by dimanganese decacarbonyl: A new and flexible approach to 5-membered N-heterocycles |url=https://www.sciencedirect.com/science/article/pii/S004040399901271X |journal=Tetrahedron Letters |language=en |volume=40 |issue=33 |pages=6095–6098 |doi=10.1016/S0040-4039(99)01271-X |issn=0040-4039|url-access=subscription }}{{Cite journal |last1=Gilbert |first1=Bruce C. |last2=Parsons |first2=Andrew F. |date=2002-02-25 |title=The use of free radical initiators bearing metal–metal, metal–hydrogen and non-metal–hydrogen bonds in synthesis |url=https://pubs.rsc.org/en/content/articlelanding/2002/p2/b102044g |journal=Journal of the Chemical Society, Perkin Transactions 2 |language=en |issue=3 |pages=367–387 |doi=10.1039/B102044G |issn=1364-5471|url-access=subscription }}{{Cite journal |last1=Fukuyama |first1=Takahide |last2=Nishitani |first2=Satoshi |last3=Inouye |first3=Takaya |last4=Morimoto |first4=Keisuke |last5=Ryu |first5=Ilhyong |date=2006-03-01 |title=Effective Acceleration of Atom Transfer Carbonylation of Alkyl Iodides by Metal Complexes. Application to the Synthesis of the Hinokinin Precursor and Dihydrocapsaicin |url=https://pubs.acs.org/doi/10.1021/ol060123%2B |journal=Organic Letters |language=en |volume=8 |issue=7 |pages=1383–1386 |doi=10.1021/ol060123+ |pmid=16562897 |issn=1523-7060|url-access=subscription }} and polymerization reactions.{{Cite journal |last1=Ciftci |first1=Mustafa |last2=Tasdelen |first2=Mehmet Atilla |last3=Yagci |first3=Yusuf |date=2013-12-11 |title=Sunlight induced atom transfer radical polymerization by using dimanganese decacarbonyl |url=https://pubs.rsc.org/en/content/articlelanding/2014/py/c3py01009k |journal=Polymer Chemistry |language=en |volume=5 |issue=2 |pages=600–606 |doi=10.1039/C3PY01009K |issn=1759-9962|url-access=subscription }}{{Cite journal |last1=Gilbert |first1=Bruce C. |last2=Harrison |first2=Richard J. |last3=Lindsay |first3=Chris I. |last4=McGrail |first4=P. Terry |last5=Parsons |first5=Andrew F. |last6=Southward |first6=Richard |last7=Irvine |first7=Derek J. |date=2003-12-01 |title=Polymerization of Methyl Methacrylate Using Dimanganese Decacarbonyl in the Presence of Organohalides |url=https://pubs.acs.org/doi/10.1021/ma034712w |journal=Macromolecules |language=en |volume=36 |issue=24 |pages=9020–9023 |doi=10.1021/ma034712w |bibcode=2003MaMol..36.9020G |issn=0024-9297|url-access=subscription }}{{Cite journal |last1=Ciftci |first1=Mustafa |last2=Norsic |first2=Sébastien |last3=Boisson |first3=Christophe |last4=D'Agosto |first4=Franck |last5=Yagci |first5=Yusuf |date=May 2015 |title=Synthesis of Block Copolymers Based on Polyethylene by Thermally Induced Controlled Radical Polymerization Using Mn 2 (CO) 10 |url=https://onlinelibrary.wiley.com/doi/10.1002/macp.201500016 |journal=Macromolecular Chemistry and Physics |language=en |volume=216 |issue=9 |pages=958–963 |doi=10.1002/macp.201500016|url-access=subscription }}

= Ligand substitution reactions =

Ligand substitution reactions that do not disrupt the Mn-Mn bonding is done by using strongly sigma donating L-type ligands that can outcompete CO without participating in redox reactivity.{{Cite journal |last1=Coville |first1=N. J. |last2=Stolzenberg |first2=A. M. |last3=Muetterties |first3=E. L. |date=April 1983 |title=Mechanism of ligand substitution in dimanganese decacarbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ja00346a079 |journal=Journal of the American Chemical Society |language=en |volume=105 |issue=8 |pages=2499–2500 |doi=10.1021/ja00346a079 |bibcode=1983JAChS.105.2499C |issn=0002-7863|url-access=subscription }} This requirement usually necessitates phosphines{{Cite journal |last1=Herrinton |first1=Thomas |last2=Brown |first2=Theodore |date=October 1, 1985 |title=Substitution of manganese pentacarbonyl is associative |url=https://pubs.acs.org/doi/10.1021/ja00306a016 |journal=Journal of the American Chemical Society |volume=107 |issue=20 |pages=5700–5703|doi=10.1021/ja00306a016 |bibcode=1985JAChS.107.5700H |url-access=subscription }}{{Cite journal |last1=Reimann |first1=Rolf H. |last2=Singleton |first2=Eric |date=1976-01-01 |title=Reactions of metal carbonyls. Part 7. Substitution reactions of decacarbonyldimanganese with tertiary phosphorus and arsenic ligands |url=https://pubs.rsc.org/en/content/articlelanding/1976/dt/dt9760002109 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=20 |pages=2109–2114 |doi=10.1039/DT9760002109 |issn=1364-5447|url-access=subscription }} or N-heterocyclic carbenes (NHCs),{{Cite journal |last1=Fraser |first1=Roan |last2=van Sittert |first2=Cornelia G. C. E. |last3=van Rooyen |first3=Petrus H. |last4=Landman |first4=Marilé |date=2017-05-01 |title=Synthesis and structural investigation of mono- and dimetallic N-heterocyclic carbene complexes of group VII transition metals |url=https://www.sciencedirect.com/science/article/pii/S0022328X17301158 |journal=Journal of Organometallic Chemistry |language=en |volume=835 |pages=60–69 |doi=10.1016/j.jorganchem.2017.02.031 |issn=0022-328X|url-access=subscription }} with substitution occurring at the axial position according to the reactions below:

File:Mn2(CO)10LigandSubstitution.png

Safety

Mn2(CO)10 is a volatile source of a metal and a source of CO.

References

{{Manganese compounds}}

{{Carbonyl complexes}}

{{DEFAULTSORT:Dimanganese Decacarbonyl}}

Category:Carbonyl complexes

Category:Organomanganese compounds

Category:Chemical compounds containing metal–metal bonds