:Dunham expansion

In quantum chemistry, the Dunham expansion is an expression for the rotational-vibrational energy levels of a diatomic molecule:

{{cite journal| last=Dunham|first=J. L.|title=The Energy Levels of a Rotating Vibrator|journal=Phys. Rev. |year=1932|volume=41|issue=6|pages=721–731|doi=10.1103/PhysRev.41.721|bibcode=1932PhRv...41..721D}}

:

E(v,J,\Omega) = \sum_{k,l} Y_{k,l} (v+1/2)^k [J(J+1) - \Omega^2]^l,

where v and J are the vibrational and rotational quantum numbers, and \Omega is the projection of J along the internuclear axis in the body-fixed frame.

The constant coefficients Y_{k,l} are called Dunham parameters with Y_{0,0} representing the electronic energy. The expression derives from a semiclassical treatment of a perturbational approach to deriving the energy levels.{{cite journal|last=Inostroza|first=N. |author2=J.R. Letelier |author3=M.L. Senent|title=On the numerical determination of Dunham's coefficients: An application to X1 R + HCl isotopomers|journal=Journal of Molecular Structure: THEOCHEM|year=2010|volume=947|pages=40–44|doi=10.1016/j.theochem.2010.01.037}} The Dunham parameters are typically calculated by a least-squares fitting procedure of energy levels with the quantum numbers.

Relation to conventional band spectrum constants

class="wikitable"

|

| Y_{0,1} = B_e

| Y_{0,2} = -D_e

| Y_{0,3} = H_e

| Y_{0,4} = L_e

Y_{1,0} = \omega_e

| Y_{1,1} = -\alpha_e

| Y_{1,2} = -\beta_e

Y_{2,0} = -\omega_ex_e

| Y_{2,1} = \gamma_e

Y_{3,0} = \omega_ey_e
Y_{4,0} = \omega_ez_e

This table adapts the sign conventions from the book of Huber and Herzberg.

{{cite book | title=Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules

| first1=K.P. | last1=Huber | first2=G. | last2=Herzberg | publisher=van Nostrand | year=1979 |

location=New York | isbn=0-442-23394-9}}

See also

References

{{Reflist}}

Category:Spectroscopy

Category:Molecular vibration

{{applied-math-stub}}