:Hexafluoroacetylacetone

{{Redirect|HFAC|House Foreign Affairs Committee|United States House Committee on Foreign Affairs|the arts building at Brigham Young University|Harris Fine Arts Center|the animal agriculture labeling organization|Humane Farm Animal Care}}

{{chembox

|Watchedfields = changed

|verifiedrevid = 455252402

|ImageFile = Hfacenol.png

|IUPACName = 1,1,1,5,5,5-hexafluoro-pentane-2,4-dione

|OtherNames = Hexafluoroacetylacetone, HfacH

|Section1={{Chembox Identifiers

|InChI = 1/C5H2F6O2/c6-4(7,8)2(12)1-3(13)5(9,10)11/h1H2

|InChIKey = QAMFBRUWYYMMGJ-UHFFFAOYAR

|StdInChI_Ref = {{stdinchicite|correct|chemspider}}

|StdInChI = 1S/C5H2F6O2/c6-4(7,8)2(12)1-3(13)5(9,10)11/h1H2

|StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

|StdInChIKey = QAMFBRUWYYMMGJ-UHFFFAOYSA-N

|CASNo_Ref = {{cascite|correct|CAS}}

|CASNo = 1522-22-1

|UNII_Ref = {{fdacite|correct|FDA}}

|UNII = MG8477QRV4

|PubChem = 73706

|ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

|ChemSpiderID =21106446

|SMILES = FC(F)(F)C(=O)CC(=O)C(F)(F)F

}}

|Section2={{Chembox Properties

|Formula = C5H2F6O2

|MolarMass = 208.06 g/mol

|Appearance = colourless liquid

|Density = 1.47 g/mL

|BoilingPtC = 70 to 71

|Solubility = organic solvents

}}

}}

Hexafluoroacetylacetone is the chemical compound with the nominal formula CF3C(O)CH2C(O)CF3 (often abbreviated as hfacH). This colourless liquid is a ligand precursor and a reagent used in MOCVD. The compound exists exclusively as the enol CF3C(OH)=CHC(O)CF3. For comparison under the same conditions, acetylacetone is 85% enol.{{cite journal|title=Keto-Enol Tautomerism in β-Dicarbonyls Studied by Nuclear Magnetic Resonance Spectroscopy. I. Proton Chemical Shifts and Equilibrium Constants of Pure Compounds|author1=Jane L. Burdett|author2=Max T. Rogers|journal=J. Am. Chem. Soc.|year=1964|volume=86|pages=2105–2109|doi=10.1021/ja01065a003}}

Metal complexes of the conjugate base exhibit enhanced volatility and Lewis acidity relative to analogous complexes derived from acetylacetone.

The visible spectra of bis(hexafluoroacetylacetonato)copper(II) and its dehydrate have been reported in carbon tetrachloride.{{cite journal|author1=Bertrand, J. A.. |author2=Kaplan, R. I. |year=1965|title= A Study of Bis(hexafluoroacetylacetonató)copper(II)|journal=Inorganic Chemistry|volume=5|issue=3|pages=489–491|doi=10.1021/ic50037a039}}

Compounds of the type bis(hexafluoroacetylacetonato)copper(II):Bn , where :B are Lewis bases such as N,N-dimethylacetamide, dimethyl sulfoxide, or pyridine and n = 1 or 2, have been prepared. Since bis(hexafluoroacetylacetonato)copper(II) is soluble in carbon tetrachloride, its Lewis acid properties have been studied for 1:1 adducts using a variety of Lewis bases.{{cite journal|author1=Partenheimer, W. |author2=Drago, R. S. |year=1970|title= Preparation and Thermodynamic Data for Adducts of Bases with Some Copper(II) 0-Diketonates|journal=Inorganic Chemistry|volume=9|pages=47–52|doi=10.1021/ic50083a009}}{{cite journal|author1=Cramer, R. E. |author2=Bopp, T. T. |year=1977|title= Graphical display of the enthalpies of adduct formation for Lewis acids and bases |journal= Journal of Chemical Education |volume=54|pages=612–613|doi= 10.1021/ed054p612}}

This organofluorine compound was first prepared by the condensation of ethyl ester of trifluoroacetic acid and 1,1,1-trifluoroacetone.{{cite journal |author1=Henne, Albert L. |author2=Newman, Melvin S. |author3=Quill, Laurence L. |author4=Staniforth, Robert A. | title = Alkaline condensation of fluorinated esters with esters and ketones | year = 1947 | journal = Journal of the American Chemical Society | volume = 69 | issue = 7| pages = 1819–20 | doi =10.1021/ja01199a075 }} It has been investigated as an etchant for copper and its complexes, such as Cu(Hfac)(trimethylvinylsilane) have been employed as precursors in microelectronics.{{cite journal |author1=Mark J. Hampden-Smith |author2=Toivo T. Kodas | title = Chemical vapour deposition of copper from (hfac)CuL compounds | year = 1995 | journal = Polyhedron | volume = 14 | issue = 6| pages = 699–732 | doi = 10.1016/0277-5387(94)00401-Y}}

Being highly electrophilic, hexafluoroacetylacetone is hydrated in water to give the tetraol.{{cite journal|last2=van Eldik|first2=R.|year=1989|title=A Spectroscopic and Mechanistic Study of the Enolization and Diol Formation of Hexafluoroacetylacetone in the Presence of Water and Alcohol|journal=Chem. Ber.|volume=122|issue=2|page=315|doi=10.1002/cber.19891220218|last1=Aygen|first1=S.}}

References