:Isotopes of beryllium

{{Short description|none}}

{{more citations needed|date=May 2018}}

{{Infobox beryllium isotopes}}

Beryllium (4Be) has 11 known isotopes and 3 known isomers, but only one of these isotopes ({{SimpleNuclide|Beryllium|9}}) is stable and a primordial nuclide. As such, beryllium is considered a monoisotopic element. It is also a mononuclidic element, because its other isotopes have such short half-lives that none are primordial and their abundance is very low (standard atomic weight is {{val|9.0121831|(5)}}). Beryllium is unique as being the only monoisotopic element with both an even number of protons and an odd number of neutrons. There are 25 other monoisotopic elements but all have odd atomic numbers, and even numbers of neutrons.

Of the 10 radioisotopes of beryllium, the most stable are {{SimpleNuclide|Beryllium|10}} with a half-life of {{val|1.387|(12)}} million years{{refn|group=nb|name=tropical|Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: {{nowrap|1=1 y = 365.2422 d = 31 556 926 s}} }} and {{SimpleNuclide|Beryllium|7}} with a half-life of {{val|53.22|(6)|u=days}}. All other radioisotopes have half-lives under {{val|15|u=seconds}}, most under {{val|30|u=milliseconds}}. The least stable isotope is {{SimpleNuclide|Beryllium|16}}, with a half-life of {{val|650|(130)|u=yoctoseconds}}.

The 1:1 neutron–proton ratio seen in stable isotopes of many light elements (up to oxygen, and in elements with even atomic number up to calcium) is prevented in beryllium by the extreme instability of {{SimpleNuclide|link=yes|Beryllium|8}} toward alpha decay, which is favored due to the extremely tight binding of helium#Related stability of the helium-4 nucleus and electron shell nuclei. The half-life for the decay of {{SimpleNuclide|Beryllium|8}} is only {{val|81.9|(3.7)|u=attoseconds}}.

Beryllium is prevented from having a stable isotope with 4 protons and 6 neutrons by the very lopsided neutron–proton ratio for such a light element. Nevertheless, this isotope, beryllium-10, has a half-life of {{val|1.387|(12)}} million years,{{refn|group=nb|name=tropical}} which indicates unusual stability for a light isotope with such a large neutron/proton imbalance. Other possible beryllium isotopes have even more severe mismatches in neutron and proton number, and thus are even less stable.

Most {{SimpleNuclide|Beryllium|9}} in the universe is thought to be formed by cosmic ray nucleosynthesis from cosmic ray spallation in the period between the Big Bang and the formation of the Solar System. The isotopes {{SimpleNuclide|Beryllium|7}}, with a half-life of {{val|53.22|(6)|u=d}}, and {{SimpleNuclide|Beryllium|10}} are both cosmogenic nuclides because they are made on a recent timescale in the Solar System by spallation,{{Cite journal|last2=Marhas|first2=Kuljeet Kaur|last1=Mishra|first1=Ritesh Kumar|date=2019-03-25|title=Meteoritic evidence of a late superflare as source of 7 Be in the early Solar System|journal=Nature Astronomy|volume=3|issue=6|language=en|pages=498–505|doi=10.1038/s41550-019-0716-0|bibcode=2019NatAs...3..498M|s2cid=126552874|issn=2397-3366}} like carbon-14.

List of isotopes

{{Isotopes table

|symbol=Be

|refs=NUBASE2020, AME2020 II

|notes=m, resonance, unc(), mass#, spin(), daughter-st, EC, IT, n, p

}}

|-id=Beryllium-5

| {{SimpleNuclide|Beryllium|5}}This isotope has not yet been observed; given data is inferred or estimated from periodic trends.

|4

|1

| {{val|5.03987|(215)}}#

|

| p ?Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

| {{SimpleNuclide|Lithium|4}} ?

| (1/2+)#

|

|-id=Beryllium-6

| {{SimpleNuclide|Beryllium|6}}

|4

|2

| {{val|6.019726|(6)}}

| {{val|5.0|(3)|u=zs}}
[{{val|91.6|(5.6)|u=keV}}]

| 2p

| {{SimpleNuclide|Helium|4}}

| 0+

|

|-

| {{SimpleNuclide|Beryllium|7}}Produced in Big Bang nucleosynthesis, but not primordial, as it all quickly decayed to 7Li

|4

|3

| {{val|7.01692871|(8)}}

| {{val|53.22|(6)|u=d}}

| ε

| {{SimpleNuclide|Lithium|7}}

| 3/2−

| Tracecosmogenic nuclide

|-

| Beryllium-8Intermediate product of triple alpha process in stellar nucleosynthesis as part of the path producing 12C

|4

|4

| {{val|8.00530510|(4)}}

| {{val|81.9|(3.7)|u=as}}
[{{val|5.58|(25)|u=eV}}]

| αAlso often considered spontaneous fission, as {{SimpleNuclide|Beryllium|8}} splits into two equal {{SimpleNuclide|Helium|4}} nuclei

| {{SimpleNuclide|Helium|4}}

| 0+

|

|-id=Beryllium-8m

| style="text-indent:1em" | {{SimpleNuclide|Beryllium|8|m}}

| colspan="3" style="text-indent:2em" | {{val|16626|(3)|u=keV}}

|

| α

| {{SimpleNuclide|Helium|4}}

| 2+

|

|-id=Beryllium-9

| {{SimpleNuclide|Beryllium|9}}

|4

|5

| {{val|9.01218306|(8)}}

| colspan=3 align=center|Stable

| 3/2−

| 1

|-id=Beryllium-9m

| style="text-indent:1em" | {{SimpleNuclide|Beryllium|9|m}}

| colspan="3" style="text-indent:2em" | {{val|14390.3|(1.7)|u=keV}}

| {{val|1.25|(10)|u=as}}
[{{val|367|(30)|u=eV}}]

|

|

| 3/2−

|

|-

| Beryllium-10

|4

|6

| {{val|10.01353469|(9)}}

| {{val|1.387|(12)|e=6|u=y}}{{refn|group=nb|name=tropical}}

| β

| {{SimpleNuclide|Boron|10}}

| 0+

| Trace

|-id=Beryllium-11

| rowspan=3|{{SimpleNuclide|Beryllium|11}}Has 1 halo neutron

| rowspan=3|4

| rowspan=3|7

| rowspan=3|{{val|11.02166108|(26)}}

| rowspan=3|{{val|13.76|(7)|u=s}}

| β ({{val|96.7|(1)|u=%}})

| {{SimpleNuclide|Boron|11}}

| rowspan=3|1/2+

| rowspan=3|

|-

| βα ({{val|3.3|(1)|u=%}})

| {{SimpleNuclide|Lithium|7}}

|-

| βp ({{val|0.0013|(3)|u=%}})

| {{SimpleNuclide|Beryllium|10}}

|-id=Beryllium-11m

| style="text-indent:1em" | {{SimpleNuclide|Beryllium|11|m}}

| colspan="3" style="text-indent:2em" | {{val|21158|(20)|u=keV}}

| {{val|0.93|(13)|u=zs}}
[{{val|500|(75)|u=keV}}]

| IT ?

| {{SimpleNuclide|Beryllium|11}} ?

| 3/2−

|

|-id=Beryllium-12

| rowspan=2|{{SimpleNuclide|Beryllium|12}}

| rowspan=2|4

| rowspan=2|8

| rowspan=2|{{val|12.0269221|(20)}}

| rowspan=2|{{val|21.46|(5)|u=ms}}

| β ({{val|99.50|(3)|u=%}})

| {{SimpleNuclide|Boron|12}}

| rowspan=2|0+

| rowspan=2|

|-

| βn ({{val|0.50|(3)|u=%}})

| {{SimpleNuclide|Boron|11}}

|-id=Beryllium-12m

| style="text-indent:1em" | {{SimpleNuclide|Beryllium|12|m}}

| colspan="3" style="text-indent:2em" | {{val|2251|(1)|u=keV}}

| {{val|233|(7)|u=ns}}

| IT

| {{SimpleNuclide|Beryllium|12}}

| 0+

|

|-id=Beryllium-13

| {{SimpleNuclide|Beryllium|13}}

|4

|9

| {{val|13.036135|(11)}}

| {{val|1.0|(7)|u=zs}}

| n ?

| {{SimpleNuclide|Beryllium|12}} ?

| (1/2−)

|

|-id=Beryllium-13m

| style="text-indent:1em" | {{SimpleNuclide|Beryllium|13|m}}

| colspan="3" style="text-indent:2em" | {{val|1500|(50)|u=keV}}

|

|

|

| (5/2+)

|

|-id=Beryllium-14

| rowspan=5|{{SimpleNuclide|Beryllium|14}}Has 4 halo neutrons

| rowspan=5|4

| rowspan=5|10

| rowspan=5|{{val|14.04289|(14)}}

| rowspan=5|{{val|4.53|(27)|u=ms}}

| βn ({{val|86|(6)|u=%}})

| {{SimpleNuclide|Boron|13}}

| rowspan=5|0+

| rowspan=5|

|-

| β (> {{val|9.0|(6.3)|u=%}})

| {{SimpleNuclide|Boron|14}}

|-

| β2n ({{val|5|(2)|u=%}})

| {{SimpleNuclide|Boron|12}}

|-

| βt ({{val|0.02|(1)|u=%}})

| {{SimpleNuclide|Beryllium|11}}

|-

| βα (< {{val|0.004|u=%}})

| {{SimpleNuclide|Lithium|10}}

|-id=Beryllium-14m

| style="text-indent:1em" | {{SimpleNuclide|Beryllium|14|m}}

| colspan="3" style="text-indent:2em" | {{val|1520|(150)|u=keV}}

|

|

|

| (2+)

|

|-id=Beryllium-15

| {{SimpleNuclide|Beryllium|15}}

|4

|11

| {{val|15.05349|(18)}}

| {{val|790|(270)|u=ys}}

| n

| {{SimpleNuclide|Beryllium|14}}

| (5/2+)

|

|-id=Beryllium-16

| {{SimpleNuclide|Beryllium|16}}

|4

|12

| {{val|16.06167|(18)}}

| {{val|650|(130)|u=ys}}
[{{val|0.73|(18)|u=MeV}}]

|2n

|{{SimpleNuclide|Beryllium|14}}

| 0+

|

{{Isotopes table/footer}}

Beryllium-7

Beryllium-7 is an isotope with a half-life of 53.3 days that is generated naturally as a cosmogenic nuclide. The rate at which the short-lived {{SimpleNuclide|Beryllium|7}} is transferred from the air to the ground is controlled in part by the weather. {{SimpleNuclide|Beryllium|7}} decay in the Sun is one of the sources of solar neutrinos, and the first type ever detected using the Homestake experiment. Presence of {{SimpleNuclide|Beryllium|7}} in sediments is often used to establish that they are fresh, i.e. less than about 3–4 months in age, or about two half-lives of {{SimpleNuclide|Beryllium|7}}.{{cite journal |last1=Yamamoto |first1=Masayoshi |last2=Sakaguchi |first2=Aya |last3=Sasaki |first3=Keiichi |last4=Hirose |first4=Katsumi |last5=Igarashi |first5=Yasuhito |last6=Kim |first6=Chang Kyu |title=Seasonal and spatial variation of atmospheric 210Pb and 7Be deposition: features of the Japan Sea side of Japan |journal=Journal of Environmental Radioactivity |date=January 2006 |volume=86 |issue=1 |pages=110–131 |doi=10.1016/j.jenvrad.2005.08.001|pmid=16181712 }}

File:Be7fromcosmicrays.png

Beryillum-8

{{main|Beryllium-8}}

Beryllium-8 decays into two alpha particles with an extremely short half-life of {{val|8.19|e=-17}} seconds, a consequence of its total ground-state energy being ~92 keV greater than that of two alpha particles. This is unusual among light {{nowrap|N {{=}} Z}} nuclides and creates a bottleneck in stellar nucleosynthesis, which must be bypassed by the fusion of three alpha particles to form stable carbon-12.

Beryllium-10

{{main|Beryllium-10}}

Image:Solar Activity Proxies.png

Beryllium-10 has a half-life of {{val|1.39e6|u=y}}, and decays by beta decay to stable boron-10 with a maximum energy of 556.2 keV.{{cite journal|author1=G. Korschinek|author2=A. Bergmaier|author3=T. Faestermann|author4=U. C. Gerstmann|journal=Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms| volume=268|issue=2| year=2010| pages=187–191|title=A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting|doi=10.1016/j.nimb.2009.09.020|bibcode=2010NIMPB.268..187K}}{{cite journal|author1=J. Chmeleff|author2=F. von Blanckenburg|author3=K. Kossert|author4=D. Jakob|journal=Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms| volume=268|issue=2| year=2010| pages=192–199|title=Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting| doi=10.1016/j.nimb.2009.09.012|bibcode=2010NIMPB.268..192C|url=http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:239521}} It is formed in the Earth's atmosphere mainly by cosmic ray spallation of nitrogen and oxygen.{{cite journal|author1=G.A. Kovaltsov|author2=I.G. Usoskin|journal=Earth Planet. Sci. Lett.| volume=291|issue=1–4| year=2010| pages=182–199|title=A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere|doi=10.1016/j.epsl.2010.01.011|bibcode=2010E&PSL.291..182K}}{{cite book|author1=J. Beer|author2=K. McCracken|author3 = R. von Steiger|year=2012|publisher = Physics of Earth and Space Environments, Springer, Berlin |title=Cosmogenic radionuclides: theory and applications in the terrestrial and space environments| volume= 26| doi=10.1007/978-3-642-14651-0|series=Physics of Earth and Space Environments|isbn=978-3-642-14650-3|s2cid=55739885}}{{cite journal|author1=S.V. Poluianov|author2=G.A. Kovaltsov|author3=A.L. Mishev|author4=I.G. Usoskin|journal=J. Geophys. Res. Atmos.| volume=121|issue=13| year=2016| pages=8125–8136|title= Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: Altitudinal profiles of yield functions|doi=10.1002/2016JD025034|arxiv=1606.05899|bibcode=2016JGRD..121.8125P|s2cid=119301845}} 10Be and its daughter product have been used to examine soil erosion, soil formation from regolith, the development of lateritic soils and the age of ice cores.{{cite journal|last1= Balco|first1= Greg|last2= Shuster|first2= David L.|year= 2009|title= 26Al-10Be–21Ne burial dating|journal= Earth and Planetary Science Letters|volume= 286|issue= 3–4|pages= 570–575|doi= 10.1016/j.epsl.2009.07.025|url= http://www.bgc.org/shuster/BalcoShuster(2009b)_Al_Be_Ne_burial_dating.pdf|bibcode= 2009E&PSL.286..570B|access-date= 2012-12-10|archive-date= 2015-09-23|archive-url= https://web.archive.org/web/20150923184215/http://www.bgc.org/shuster/BalcoShuster(2009b)_Al_Be_Ne_burial_dating.pdf|url-status= dead}} 10Be is a significant isotope used as a proxy data measure for cosmogenic nuclides to characterize solar and extra-solar attributes of the past from terrestrial samples.{{cite journal | last = Paleari | first = Chiara I. | author2 = F. Mekhaldi |author3 = F. Adolphi |author4 = M. Christl |author5 = C. Vockenhuber |author6 = P. Gautschi |author7 = J. Beer |author8 = N. Brehm |author9 = T. Erhardt |author10 = H.-A. Synal |author11 = L. Wacker |author12 = F. Wilhelms |author13 = R. Muscheler | title = Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP | journal = Nat. Commun. | volume = 13 | issue = 214 | date = 2022 | page = 214 | doi = 10.1038/s41467-021-27891-4 | pmid = 35017519 | pmc = 8752676 | bibcode = 2022NatCo..13..214P |doi-access = free }}

Decay chains

Most isotopes of beryllium within the proton/neutron drip lines decay via beta decay and/or a combination of beta decay and alpha decay or neutron emission. However, {{SimpleNuclide|Beryllium|7}} decays only via electron capture, a phenomenon to which its unusually long half-life may be attributed. Notably, its half-life can be artificially lowered by 0.83% via endohedral enclosure (7Be@C60).{{cite journal |last1=Ohtsuki |first1=T. |last2=Yuki |first2=H. |last3=Muto |first3=M. |last4=Kasagi |first4=J. |last5=Ohno |first5=K. |title=Enhanced Electron-Capture Decay Rate of 7Be Encapsulated in C60 Cages |journal=Physical Review Letters |date=9 September 2004 |volume=93 |issue=11 |pages=112501 |doi=10.1103/PhysRevLett.93.112501 |pmid=15447332 |bibcode=2004PhRvL..93k2501O |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.112501 |access-date=23 February 2022}} Also anomalous is {{SimpleNuclide|Beryllium|8}}, which decays via alpha decay to {{SimpleNuclide|Helium|4}}. This alpha decay is often considered fission, which would be able to account for its extremely short half-life.

:\begin{array}{l}{}\\

\ce{^5_4Be -> [\ce{Unknown}] {^4_3Li} + {^1_1H}} \\

\ce{^6_4Be -> [5 \ \ce{zs}] {^4_2He} + {2^1_1H}} \\

\ce{{^7_4Be} + e^- -> [53.22 \ \ce{d}] {^7_3Li}} \\

\ce{^8_4Be -> [81.9 \ \ce{as}] {2^4_2He}} \\

\ce{^{10}_4Be -> [1.387 \ \ce{Ma}] {^{10}_5B} + e^-} \\

\ce{^{11}_4Be -> [13.76 \ \ce{s}] {^{11}_5B} + e^-} \\

\ce{^{11}_4Be -> [13.76 \ \ce{s}] {^7_3Li} + {^4_2He} + e^-} \\

\ce{^{12}_4Be -> [21.46 \ \ce{ms}] {^{12}_5B} + e^-} \\

\ce{^{12}_4Be -> [21.46 \ \ce{ms}] {^{11}_5B} + {^1_0n} + e^-} \\

\ce{^{13}_4Be -> [1 \ \ce{zs}] {^{12}_4Be} + {^1_0n}} \\

\ce{^{14}_4Be -> [4.53 \ \ce{ms}] {^{13}_5B} + {^1_0n} + e^-} \\

\ce{^{14}_4Be -> [4.53 \ \ce{ms}] {^{14}_5B} + e^-} \\

\ce{^{14}_4Be -> [4.53 \ \ce{ms}] {^{12}_5B} + {2^1_0n} + e^-} \\

\ce{^{15}_4Be -> [790 \ \ce{ys}] {^{14}_4Be} + {^1_0n}} \\{}

\ce{^{16}_4Be -> [650 \ \ce{ys}] {^{14}_4Be} + {2^1_0n}} \\{}

\end{array}

Notes

{{reflist|group=nb}}

References

{{Reflist}}

{{Navbox element isotopes}}

{{Authority control}}

Category:Beryllium

Beryllium