:Montréalone

{{Chembox

| ImageFile = Montrealone parent structure.png

| ImageSize = 100px

| ImageCaption = Montréalone parent compound

| IUPACName =

| Section1 = {{Chembox Identifiers

| CASNo = 1228992-40-2

| CASNo_Ref = {{cascite|correct|CAS}}

| DTXSID = DTXSID701018796

| PubChem = 154735194

| StdInChI=1S/C2H5NOP/c1-3-2-5-4-1/h1-3H,5H2/q+1

| StdInChIKey = CEHNCPLHGNXBLW-UHFFFAOYSA-N

| SMILES = [CH-]1[NH+]=CO[PH2+]1

}}

}}

Montréalone (synonyms: montrealone, phospha-münchnone) is a mesoionic heterocyclic chemical compound. It is named for the city of Montréal, Canada, which is the location of McGill University, where it was first discovered.{{Cite journal |last1=Reissig |first1=Hans-Ulrich |last2=Zimmer |first2=Reinhold |date=2014-09-08 |title=Münchnones-New Facets after 50 Years |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201405092 |journal=Angewandte Chemie International Edition |language=en |volume=53 |issue=37 |pages=9708–9710 |doi=10.1002/anie.201405092|pmid=25045012 |url-access=subscription }}

Structure

The montréalone parent compound has been studied theoretically,{{Cite journal |last1=Krenske |first1=Elizabeth H. |last2=Houk |first2=K. N. |last3=Arndtsen |first3=Bruce A. |last4=St. Cyr |first4=Daniel J. |date=2008-08-01 |title=Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "Montréalones" |url=https://pubs.acs.org/doi/10.1021/ja802646f |journal=Journal of the American Chemical Society |language=en |volume=130 |issue=31 |pages=10052–10053 |doi=10.1021/ja802646f |pmid=18616248 |issn=0002-7863|url-access=subscription }} and is unlikely to exist as a stable species. Analogs bearing multiple substituents display stability suitable for synthesis, isolation, and characterization.{{Cite journal |last1=St-Cyr |first1=Daniel J. |last2=Morin |first2=Marie S. T. |last3=Bélanger-Gariépy |first3=Francine |last4=Arndtsen |first4=Bruce A. |last5=Krenske |first5=Elizabeth H. |last6=Houk |first6=K. N. |date=2010-06-18 |title=Phospha-Münchnones: Electronic Structures and 1,3-Dipolar Cycloadditions |url=https://pubs.acs.org/doi/10.1021/jo1008383 |journal=The Journal of Organic Chemistry |language=en |volume=75 |issue=12 |pages=4261–4273 |doi=10.1021/jo1008383 |pmid=20481447 |issn=0022-3263|url-access=subscription }} Substituted montréalones with a balance of stability and reactivity have been used as reaction intermediates in the synthesis of other heterocycles.

File:substituted montrealone.png

Theoretical and experimental analysis of stable montréalones reveals overlapping azomethine ylide and Wittig-type moieties within the unsaturated 5-membered organophosphorus ring system. Depending on the phosphorus substituents, ring-chain valence tautomerism allows montréalones to display variable degrees of equilibrium and structural blending with N-acyl amino phosphonium ylide forms. The cyclic 1,3-dipolar form is detectably or exclusively formed with phosphite and phosphonite-based analogs. Triphenylphosphine-based variants lack sufficient tendency for intramolecular cyclization, and exist as acyclic phosphonium ylides.{{Cite journal |last1=St. Cyr |first1=Daniel J. |last2=Arndtsen |first2=Bruce A. |date=2007-10-01 |title=A New Use of Wittig-Type Reagents as 1,3-Dipolar Cycloaddition Precursors and in Pyrrole Synthesis |url=https://pubs.acs.org/doi/10.1021/ja074330w |journal=Journal of the American Chemical Society |language=en |volume=129 |issue=41 |pages=12366–12367 |doi=10.1021/ja074330w |pmid=17880218 |issn=0002-7863|url-access=subscription }}{{Cite journal |last1=Reissig |first1=Hans-Ulrich |last2=Zimmer |first2=Reinhold |date=2014-09-08 |title=Münchnones—New Facets after 50 Years |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201405092 |journal=Angewandte Chemie International Edition |language=en |volume=53 |issue=37 |pages=9708–9710 |doi=10.1002/anie.201405092 |pmid=25045012 |issn=1433-7851|url-access=subscription }}

File:Montrealone resonance and equilibrium structures.png

Synthesis

Montréalones are related to Wittig reagents and can be generated in a similar fashion. Reaction of organophosphorus(III) compounds with N-acyliminium ions affords phosphonium salt intermediates which are deprotonated using non-nucleophilic bases (e.g. DBU, LiHMDS). N-Acyliminium ions are generated in situ from acid chlorides and imines such that the '1,3-dipole' itself is generated in a multi-component reaction. The most efficient phosphorus(III) precursor for dipole synthesis is 2-phenylbenzo[d][1,3,2]dioxaphosphole [PhP(catechyl)] owing to the balance of nucleophilicity and electrophilicity that it affords.

File:Montrealone generation.png

Reactions

Montréalones participate in 1,3-dipolar cycloaddition reactions with dipolarophiles such as imines, alkenes, and alkynes to respectively afford imidazoles,{{Cite journal |last1=Aly |first1=Sara |last2=Romashko |first2=Mikhail |last3=Arndtsen |first3=Bruce A. |date=2015-03-06 |title=Multicomponent Synthesis of Substituted and Fused-Ring Imidazoles via Phospha-münchnone Cycloaddition |url=https://pubs.acs.org/doi/10.1021/jo5028936 |journal=The Journal of Organic Chemistry |language=en |volume=80 |issue=5 |pages=2709–2714 |doi=10.1021/jo5028936 |pmid=25688846 |issn=0022-3263|url-access=subscription }} 2-pyrrolines,{{Cite journal |last1=Morin |first1=Marie S. T. |last2=Arndtsen |first2=Bruce A. |date=2014-02-21 |title=Chiral Phosphorus-Based 1,3-Dipoles: A Modular Approach to Enantioselective 1,3-Dipolar Cycloaddition and Polycyclic 2-Pyrroline Synthesis |url=https://pubs.acs.org/doi/10.1021/ol4035512 |journal=Organic Letters |language=en |volume=16 |issue=4 |pages=1056–1059 |doi=10.1021/ol4035512 |pmid=24502319 |issn=1523-7060|url-access=subscription }} and pyrroles.Organic Chemistry Portal pyrrole synthesis abstract: {{cite web |url=https://www.organic-chemistry.org/abstracts/lit1/886.shtm |title= A New Use of Wittig-Type Reagents as 1,3-Dipolar Cycloaddition Precursors and in Pyrrole Synthesis. |access-date=6 April 2015}} The latter heterocyclic products were obtained by multi-component reactions involving in situ-generation of montréalones from imines, acid chlorides, and phosphonites prior to one-pot reactions with the dipolarophile. Moreover, conjugated poly(1,3-dipole) variants of montréalones have been generated and used in the synthesis of polyheterocycles related to polypyrroles.{{Cite journal |last1=Kayser |first1=Laure V. |last2=Vollmer |first2=Moritz |last3=Welnhofer |first3=Merve |last4=Krikcziokat |first4=Hanna |last5=Meerholz |first5=Klaus |last6=Arndtsen |first6=Bruce A. |date=2016-08-24 |title=Metal-Free, Multicomponent Synthesis of Pyrrole-Based π-Conjugated Polymers from Imines, Acid Chlorides, and Alkynes |url=https://pubs.acs.org/doi/10.1021/jacs.6b05035 |journal=Journal of the American Chemical Society |language=en |volume=138 |issue=33 |pages=10516–10521 |doi=10.1021/jacs.6b05035 |pmid=27471822 |issn=0002-7863|url-access=subscription }}{{Cite journal |last1=Kayser |first1=Laure V. |last2=Hartigan |first2=Elizabeth M. |last3=Arndtsen |first3=Bruce A. |date=2016-12-05 |title=Multicomponent Coupling Approach to Cross-Conjugated Polymers from Vanillin-Based Monomers |url=https://pubs.acs.org/doi/10.1021/acssuschemeng.6b02302 |journal=ACS Sustainable Chemistry & Engineering |language=en |volume=4 |issue=12 |pages=6263–6267 |doi=10.1021/acssuschemeng.6b02302 |issn=2168-0485|url-access=subscription }}

File:Montrealone reactions.png

Cycloaddition reactions of asymmetric 1,3-dipoles and dipolarophiles can lead to isomeric product mixtures, particularly with münchnones and alkynes in the synthesis of pyrroles.Lubell, W.; St-Cyr, D.; Dufour-Gallant, J.; Hopewell, R.; Boutard, N.; Kassem, T.; Dörr, A.; Zelli, R., {{cite web |url=https://www.thieme.de/en/thieme-chemistry/sos-knowledge-updates-2013-58727.htm |title= 1H-Pyrroles (Update 2013)}} Science of Synthesis 2013, 2013/1, 157-388.{{Cite book |last=Gribble |first=Gordon W. |title=Oxazoles: Synthesis, Reactions, and Spectroscopy, Part A |chapter-url=https://onlinelibrary.wiley.com/doi/10.1002/0471428035.ch4 |chapter=Mesoionic Oxazoles |series=The Chemistry of Heterocyclic Compounds |date=2003-07-25 |publisher=John Wiley & Sons, Inc. |isbn=978-0-471-39494-5 |editor-last=Palmer |editor-first=David C. |volume=60 |location=Hoboken, NJ, USA |pages=473–576 |language=en |doi=10.1002/0471428035.ch4}}{{Cite book |last1=Gingrich |first1=Henry L. |url=https://onlinelibrary.wiley.com/doi/10.1002/9780470187289.ch4 |title=Mesoionic Oxazoles |last2=Baum |first2=Jonathan S. |date=January 1986 |publisher=Wiley |isbn=978-0-471-86958-0 |editor-last=Turchi |editor-first=I. J. |edition=1 |volume=45 |pages=731–961 |language=en |doi=10.1002/9780470187289.ch4}} In contrast to related Diels-Alder reactions, rationalization of regioisomeric bias using conventional frontier molecular orbital (FMO) theory fails. The complementary use of montéalones and münchnones allows product mixtures to be avoided and highlights the need to consider transition-state geometrical changes (distortion) in the rationalization process.{{Cite journal |last1=Morin |first1=Marie S. T. |last2=St-Cyr |first2=Daniel J. |last3=Arndtsen |first3=Bruce A. |last4=Krenske |first4=Elizabeth H. |last5=Houk |first5=K. N. |date=2013-11-20 |title=Modular Mesoionics: Understanding and Controlling Regioselectivity in 1,3-Dipolar Cycloadditions of Münchnone Derivatives |url=https://pubs.acs.org/doi/10.1021/ja406833q |journal=Journal of the American Chemical Society |language=en |volume=135 |issue=46 |pages=17349–17358 |doi=10.1021/ja406833q |issn=0002-7863|url-access=subscription }}

File:Montrealone vs munchnone cycloaddition.png

See also

References