:Siamese method

{{Short description|Mathematical process for constructing magic squares}}

File:SiameseMethod.gif

The Siamese method, or De la Loubère method, is a simple method to construct any size of n-odd magic squares (i.e. number squares in which the sums of all rows, columns and diagonals are identical). The method was brought to France in 1688 by the French mathematician and diplomat Simon de la Loubère,{{cite book |title=Number Story: From Counting to Cryptography |url=https://archive.org/details/numberstoryfromc00higg_612 |url-access=registration |last=Higgins |first=Peter |year=2008 |publisher=Copernicus |location=New York |isbn=978-1-84800-000-1 |page=[https://archive.org/details/numberstoryfromc00higg_612/page/n63 54] }} footnote 8 as he was returning from his 1687 embassy to the kingdom of Siam.Mathematical Circles Squared By Phillip E. Johnson, Howard Whitley Eves, p.22CRC Concise Encyclopedia of Mathematics By Eric W. Weisstein, Page 1839 [https://books.google.com/books?id=uzIekOtnD2gC&pg=PA1839&dq=Loubere+Siam+magic+square&sig=0hwmj7fcQqclTG9uVgwY5fL5bgQ]The Zen of Magic Squares, Circles, and Stars By Clifford A. Pickover Page 38 [https://books.google.com/books?id=slpObYbvV4gC&pg=PA38&dq=Loubere+Siam+magic+square&sig=to5a7r-pEhNFV9iYe85lSSqtJq4] The Siamese method makes the creation of magic squares straightforward.

Publication

File:Siamese Square.jpg's 1693 A new historical relation of the kingdom of Siam.]]

De la Loubère published his findings in his book A new historical relation of the kingdom of Siam (Du Royaume de Siam, 1693), under the chapter entitled The problem of the magical square according to the Indians.[http://dlxs.library.cornell.edu/cgi/t/text/pageviewer-idx?c=sea;idno=sea130;view=image;seq=258 A new historical relation of the kingdom of Siam p.228]

Although the method is generally qualified as "Siamese", which refers to de la Loubère's travel to the country of Siam, de la Loubère himself learnt it from a Frenchman named M.Vincent (a doctor, who had first travelled to Persia and then to Siam, and was returning to France with the de la Loubère embassy), who himself had learnt it in the city of Surat in India:

{{blockquote|"Mr. Vincent, whom I have so often mentioned in my Relations, seeing me one day in the ship, during our return, studiously to range the Magical Squares after the method of Bachet, informed me that the Indians of Suratte ranged them with much more facility, and taught me their method for the unequal squares only, having, he said, forgot that of the equal"|Simon de la Loubère, A new historical relation of the kingdom of Siam.}}

The method

The method was surprising in its effectiveness and simplicity:

{{blockquote|"I hope that it will not be unacceptable that I give the rules and the demonstration of this method, which is surprising for its extreme facility to execute a thing, which has appeared difficult to our Mathematicians"|Simon de la Loubère, A new historical relation of the kingdom of Siam.}}

First, an arithmetic progression has to be chosen (such as the simple progression 1,2,3,4,5,6,7,8,9 for a square with three rows and columns (the Lo Shu square)).

Then, starting from the central box of the first row with the number 1 (or the first number of any arithmetic progression), the fundamental movement for filling the boxes is diagonally up and right (), one step at a time. When a move would leave the square, it is wrapped around to the last row or first column, respectively.

If a filled box is encountered, one moves vertically down one box () instead, then continuing as before.

=Order-3 magic squares=

{{col-begin|width=auto; margin:0.5em auto}}

{{col-break|valign=bottom}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 1

1
.
.

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 2

1
.
2

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 3

1
3
2

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 4

1
3
42

{{col-end}}

{{col-begin|width=auto; margin:0.5em auto}}

{{col-break|valign=bottom}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 5

1
35
42

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 6

16
35
42

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 7

16
357
42

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 8

816
357
42

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | step 9

816
357
492

{{col-end}}

=Order-5 magic squares=

{{col-begin|width=auto; margin:0.5em auto}}

{{col-break|valign=bottom}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Step 1

1
.
.
.
.

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Step 2

1
.
.
.3
.2

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Step 3

1
5
4.
3
2

{{col-end}}

{{col-begin|width=auto; margin:0.5em auto}}

{{col-break|valign=bottom}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Step 4

18
57
46.
3
2

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Step 5

1815
5714
4613
10123
1129

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Step 6

17241815
23571416
46132022
101219213
11182529

{{col-end}}

=Other sizes=

Any n-odd square ("odd-order square") can be thus built into a magic square. The Siamese method does not work however for n-even squares ("even-order squares", such as 2 rows/ 2 columns, 4 rows/ 4 columns etc...).

{{col-begin|width=auto; margin:0.5em auto}}

{{col-break|valign=bottom}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | Order 3

816
357
492

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Order 5

17241815
23571416
46132022
101219213
11182529

{{col-break|valign=bottom|gap=2em}}

class="wikitable" style="margin:0.5em auto;text-align:center;width:18em;height:18em;table-layout:fixed;"

! colspan="9" | Order 9

47586980112233445
57687991122334446
67788102132435456
77718203142535566
61719304152636576
16272940516264755
26283950617274415
36384960717331425
37485970812132435

{{col-end}}

=Other values=

Any sequence of numbers can be used, provided they form an arithmetic progression (i.e. the difference of any two successive members of the sequence is a constant). Also, any starting number is possible. For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.

class="wikitable" style="margin:0.5em auto;text-align:center;width:6em;height:6em;table-layout:fixed;"

! colspan="3" | Order 3

40530
152535
204510

=Other starting points=

It is possible not to start the arithmetic progression from the middle of the top row, but then only the row and column sums will be identical and result in a magic sum, whereas the diagonal sums will differ. The result will thus not be a true magic square:

class="wikitable" style="margin:0.5em auto;text-align:center;width:9em;height:9em;table-layout:fixed;"

! colspan="3" | Order 3

500700300
900200400
100600800

=Rotations and reflections=

Numerous other magic squares can be deduced from the above by simple rotations and reflections.

Variations

A slightly more complicated variation of this method exists in which the first number is placed in the box just above the center box. The fundamental movement for filling the boxes remains up and right (), one step at a time. However, if a filled box is encountered, one moves vertically up two boxes instead, then continuing as before.

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Order 5

23619215
101811422
17513219
41225816
11247203

Numerous variants can be obtained by simple rotations and reflections. The next square is equivalent to the above (a simple reflexion): the first number is placed in the box just below the center box. The fundamental movement for filling the boxes then becomes diagonally down and right (), one step at a time. If a filled box is encountered, one moves vertically down two boxes instead, then continuing as before.[http://dlxs.library.cornell.edu/cgi/t/text/pageviewer-idx?c=sea;idno=sea130;view=image;seq=259 A new historical relation of the kingdom of Siam p229]

class="wikitable" style="margin:0.5em auto;text-align:center;width:10em;height:10em;table-layout:fixed;"

! colspan="5" | Order 5

11247203
41225816
17513219
101811422
23619215

These variations, although not quite as simple as the basic Siamese method, are equivalent to the methods developed by earlier Arab and European scholars, such as Manuel Moschopoulos (1315), Johann Faulhaber (1580–1635) and Claude Gaspard Bachet de Méziriac (1581–1638), and allowed to create magic squares similar to theirs.The Zen of Magic Squares, Circles, and Stars by Clifford A. Pickover, 2002 p.37 [https://books.google.com/books?id=QxMdE_HlrQsC&pg=PA45&dq=Faulhaber+magic+squares&sig=ACfU3U16MpAfumGuHO8FEC39p4WkN_z3wQ#PPA37,M1]

See also

Notes and references

{{reflist}}

{{DEFAULTSORT:Siamese Method}}

Category:Magic squares

Category:Search algorithms