:Supramolecular electronics
{{Short description|Field of chemistry}}
Image:Hexa-peri-hexabenzocoronene ChemEurJ 2000 1834 commons.jpg, 2000, pp. 1834–1839]]
Supramolecular electronics is the experimental field of supramolecular chemistry that bridges the gap between molecular electronics and bulk plastics in the construction of electronic circuitry at the nanoscale.{{Cite journal |last1=Meijer |first1=E. W. |last2=Schenning |first2=Albert P. H. J. |date=2002-09-01 |title=Chemistry: Material marriage in electronics |journal=Nature |volume=419 |issue=6905 |pages=353–354 |doi=10.1038/419353a |issn=0028-0836|doi-access=free |pmid=12353020 |bibcode=2002Natur.419..353M }} In supramolecular electronics, assemblies of pi-conjugated systems on the 5 to 100 nanometer scale are prepared by molecular self-assembly with the aim to fit these structures between electrodes. With single molecules as researched in molecular electronics at the 5 nanometer scale this would be impractical.{{why|date=November 2023}} Nanofibers can be prepared from polymers such as polyaniline and polyacetylene.{{Cite journal |last1=Schenning |first1=Albertus P. H. J. |last2=Meijer |first2=E. W. |date=2005-06-23 |title=Supramolecular electronics; nanowires from self-assembled π-conjugated systems |url=https://pubs.rsc.org/en/content/articlelanding/2005/cc/b501804h |journal=Chemical Communications |issue=26 |pages=3245–3258 |doi=10.1039/B501804H |pmid=15983639 |issn=1364-548X |archive-date=2023-11-15 |access-date=2023-11-15 |archive-url=https://web.archive.org/web/20231115183341/https://pubs.rsc.org/en/content/articlelanding/2005/cc/b501804h |url-status=live |url-access=subscription }} Chiral oligo(p-phenylenevinylene)s self-assemble in a controlled fashion into (helical) wires.{{Cite journal |last1=Schenning |first1=A. P. H. J. |last2=Jonkheijm |first2=P. |last3=Hoeben |first3=F. J. M. |last4=van Herrikhuyzen |first4=J. |last5=Meskers |first5=S. C. J. |last6=Meijer |first6=E. W. |last7=Herz |first7=L. M. |last8=Daniel |first8=C. |last9=Silva |first9=C. |last10=Phillips |first10=R. T. |last11=Friend |first11=R. H. |last12=Beljonne |first12=D. |last13=Miura |first13=A. |last14=De Feyter |first14=S. |last15=Zdanowska |first15=M. |display-authors=2 |date=2004-12-07 |title=Towards supramolecular electronics |url=https://www-herz.physics.ox.ac.uk/publications/Schenning04a.pdf |journal=Synthetic Metals |series=Supramolecular approaches to organic electronics and nanotechnology. Proceedings of Symposium F. E-MRS Spring Meeting. |volume=147 |issue=1 |pages=43–48 |doi=10.1016/j.synthmet.2004.06.038 |issn=0379-6779 |archive-date=2024-04-21 |access-date=2023-11-15 |archive-url=https://web.archive.org/web/20240421232926/https://www-herz.physics.ox.ac.uk/publications/Schenning04a.pdf |url-status=live }} An example of actively researched compounds in this field are certain coronenes.