:en:Local Bubble
{{Short description|Cavity in the interstellar medium which contains the Local Interstellar Cloud}}
{{use dmy dates|date=September 2020}}{{infobox nebula
|name= Local Bubble
|type= Supershell
|image= Galaxymap.com, map 100 parsecs (2022).png
|caption= Map of open star clusters and bright stars in the Local Bubble, viewed from top down
|dist_ly= 0
|dist_pc= 0
|radius_ly= 500
|names= Local Hot Bubble, LHB,{{cite journal
|first1=Roland J. |last1=Egger
|first2=Bernd |last2=Aschenbach
|date=February 1995
|title=Interaction of the Loop I supershell with the Local Hot Bubble
|journal=Astronomy and Astrophysics
|volume=294 |number=2 |page=L25–L28
|bibcode=1995A&A...294L..25E |arxiv=astro-ph/9412086
}} Local Bubble, Local Interstellar Bubble{{cite simbad
|title=NAME Local Bubble
|access-date=15 March 2014
}}
}}
The Local Bubble, or Local Cavity,{{cite journal
| last=Abt | first=Helmut A.
| date=December 2015
| title=Hot gaseous stellar disks avoid regions of low interstellar densities
| journal=Publications of the Astronomical Society of the Pacific
| volume=127 | issue=958 | pages=1218–1225
| doi=10.1086/684436 | bibcode=2015PASP..127.1218A
| s2cid=124774683
}} is a relative cavity in the interstellar medium (ISM) of the Orion Arm in the Milky Way. It contains the List of nearest stars and brown dwarfs and, among others, the Local Interstellar Cloud (which contains the Solar System), the neighboring G-Cloud, the Ursa Major moving group (List of nearby stellar associations and moving groups stellar moving group), and the Hyades (the nearest open cluster). It is estimated to be at least 1000 light years in size{{Cite book |last=Frisch |first=P. C. |url=https://www.google.co.il/books/edition/Solar_Journey_The_Significance_of_Our_Ga/6IIkHBE2PRQC?hl=en&gbpv=1&pg=PA4&printsec=frontcover |title=Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth |date=2006-09-12 |publisher=Springer Science & Business Media |isbn=978-1-4020-4557-8 |pages=4 |language=en}}{{Clarify|date=October 2023}}, and is defined by its neutral-hydrogen density of about 0.05 atoms/cm3, or approximately one tenth of the average for the ISM in the Milky Way (0.5 atoms/cm3), and one sixth that of the Local Interstellar Cloud (0.3 atoms/cm3).{{dubious|date=March 2019}}{{cite web
|title=Our local galactic neighborhood
|date=2000-02-08
|publisher=National Aeronautics and Space Administration (NASA)
|website=Interstellar.jpl.nasa.gov
|url=http://interstellar.jpl.nasa.gov/interstellar/probe/introduction/neighborhood.html
|access-date=2013-07-23 |url-status=dead
|archive-url=https://web.archive.org/web/20131121061128/http://interstellar.jpl.nasa.gov/interstellar/probe/introduction/neighborhood.html
|archive-date=2013-11-21
}}
The exceptionally sparse gas of the Local Bubble is the result of supernovae that exploded within the past ten to twenty million years. Geminga, a pulsar in the constellation Gemini, was once thought to be the remnant of a single supernova that created the Local Bubble, but now multiple supernovae in subgroup B1 of the Pleiades moving group are thought to have been responsible,{{cite journal
| first1 = T.W. |last1=Berghoefer
| first2 = D. |last2=Breitschwerdt
| year = 2002
| title = The origin of the young stellar population in the solar neighborhood – a link to the formation of the Local Bubble?
| journal = Astronomy and Astrophysics
| volume = 390 | issue = 1 | pages = 299–306
| arxiv = astro-ph/0205128v2
| doi = 10.1051/0004-6361:20020627
|bibcode = 2002A&A...390..299B
|s2cid=6002327
}} becoming a remnant supershell.{{cite web
|first1=J.R. |last1=Gabel
|first2=F.C. |last2=Bruhweiler
|date=8 January 1998
|title=[51.09] Model of an expanding supershell structure in the LISM
|publisher=American Astronomical Society
|url=http://aas.org/archives/BAAS/v29n5/aas191/abs/S051009.html
|access-date=2014-03-14 |url-status=dead
|archive-url=https://web.archive.org/web/20140315102240/http://aas.org/archives/BAAS/v29n5/aas191/abs/S051009.html
|archive-date=15 March 2014
}} Other research suggests that the subgroups Lower Centaurus–Crux (LCC) and Upper Centaurus–Lupus (UCL), of the Scorpius–Centaurus association created both the Local Bubble and the Loop I Bubble, with LCC being responsible for the Local Bubble and UCL being responsible for the Loop I Bubble.{{Cite journal |last=Maíz-Apellániz |first=Jesús |date=2001-10-01 |title=The Origin of the Local Bubble |url=https://ui.adsabs.harvard.edu/abs/2001ApJ...560L..83M |journal=The Astrophysical Journal |volume=560 |issue=1 |pages=L83–L86 |doi=10.1086/324016 |issn=0004-637X|arxiv=astro-ph/0108472 |bibcode=2001ApJ...560L..83M }} It was found that 14 to 20 supernovae originated from LCC and UCL, which could have formed these bubbles.{{Cite journal |last1=Fuchs |first1=B. |last2=Breitschwerdt |first2=D. |last3=de Avillez |first3=M. A. |last4=Dettbarn |first4=C. |last5=Flynn |first5=C. |date=2006-12-01 |title=The search for the origin of the Local Bubble redivivus |journal=Monthly Notices of the Royal Astronomical Society |volume=373 |issue=3 |pages=993–1003 |doi=10.1111/j.1365-2966.2006.11044.x |doi-access=free |issn=0035-8711|arxiv=astro-ph/0609227 |bibcode=2006MNRAS.373..993F |hdl=10174/5608 }}
Description
The Solar System has been traveling through the region currently occupied by the Local Bubble for the last five to ten million years.{{cite web
|title=Local Chimney and Superbubbles
|website=Solstation.com
|url=http://www.solstation.com/x-objects/chimney.htm
}} Its current location lies in the Local Interstellar Cloud (LIC), a minor region of denser material within the Bubble. The LIC formed where the Local Bubble and the Loop I Bubble met. The gas within the LIC has a density of approximately 0.3 atoms per cubic centimeter.
The Local Bubble is not spherical, but appears to be narrower in the galactic plane, becoming somewhat egg-shaped or elliptical, and may widen above and below the galactic plane, becoming shaped like an hourglass. It abuts other bubbles of less dense interstellar medium (ISM), including, in particular, the Loop I Bubble. The Loop I Bubble was cleared, heated, and maintained by supernovae and stellar winds in the Scorpius–Centaurus association, some 500 light years from the Sun. The Loop I Bubble contains the star Antares (also known as α Sco, or Alpha Scorpii), as shown on the diagram above right. Several tunnels connect the cavities of the Local Bubble with the Loop I Bubble, called the "Lupus Tunnel".{{cite journal
|last1=Lallement |first1=R.
|last2=Welsh |first2=B.Y.
|last3=Vergely |first3=J.L.
|last4=Crifo |first4=F.
|last5=Sfeir |first5=D.
|year=2003
|title=3D mapping of the dense interstellar gas around the Local Bubble
|journal=Astronomy and Astrophysics
|volume=411 |issue=3 |pages=447–464
|bibcode=2003A&A...411..447L
|doi=10.1051/0004-6361:20031214 |doi-access=free
}} Other bubbles adjacent to the Local Bubble are the Loop II Bubble and the Loop III Bubble. In 2019, researchers found interstellar iron in Antarctica which they relate to the Local Interstellar Cloud, which might be related to the formation of the Local Bubble.{{cite journal
|first1=D. |last1=Koll
|display-authors=etal
|year=2019
|title=Interstellar {{sup|60}}Fe in Antarctica
|journal=Physical Review Letters
|volume=123 |issue=7 |page=072701
|doi=10.1103/PhysRevLett.123.072701 |pmid=31491090
|bibcode=2019PhRvL.123g2701K
|s2cid=201868513
|hdl=1885/298253
|hdl-access=free
Observation
Launched in February 2003 and active until April 2008, a small space observatory called Cosmic Hot Interstellar Plasma Spectrometer (CHIPSat) examined the hot gas within the Local Bubble.{{cite web
|title=Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)
|publisher=University of California – Berkeley
|date=2003-01-12
|website=Chips.ssl.berkeley.edu
|url=http://chips.ssl.berkeley.edu/chips.html
|access-date=2013-07-23 |url-status=dead
|archive-url=https://web.archive.org/web/20131121000528/http://chips.ssl.berkeley.edu/chips.html
|archive-date=2013-11-21
}} The Local Bubble was also the region of interest for the Extreme Ultraviolet Explorer mission (1992–2001), which examined hot EUV sources within the bubble. Sources beyond the edge of the bubble were identified but attenuated by the denser interstellar medium. In 2019, the first 3D map of the Local Bubble was reported using observations of diffuse interstellar bands.{{cite journal
|first1=Amin |last1=Farhang
|first2=Jacco Th. |last2=van Loon
|first3=Habib G. |last3=Khosroshahi
|first4=Atefeh |last4=Javadi
|first5=Mandy |last5=Bailey
|date=8 July 2019
|title=3D map of the local bubble |type=letter
|journal=Nature Astronomy
|volume=3 |pages=922–927
|doi=10.1038/s41550-019-0814-z |arxiv=1907.07429
|s2cid=197402894
|url=https://www.nature.com/articles/s41550-019-0814-z
}}
In 2020, the shape of the dusty envelope surrounding the Local Bubble was retrieved and modeled from 3D maps of the dust density obtained from stellar extinction data.{{cite journal
|first1=Vincent |last1=Pelgrims
|first2=Katia |last2=Ferrière
|first3=Francois |last3=Boulanger
|first4=Rosine |last4=Lallement
|first5=Ludovic |last5=Montier
|date=April 2020
|title=Modeling the magnetized Local Bubble from dust data
|journal=Astronomy & Astrophysics
|volume=636 |pages=A17
|doi=10.1051/0004-6361/201937157 |arxiv=1911.09691
|bibcode=2020A&A...636A..17P
|url=https://www.aanda.org/articles/aa/full_html/2020/04/aa37157-19/aa37157-19.html
}}
Impact on star formation
File:Localbubble formation.gif
In January 2022, a paper in the journal Nature found that observations and modeling had determined that the action of the expanding surface of the bubble had collected gas and debris and was responsible for the formation of all young, nearby stars.{{cite web | url = https://sites.google.com/cfa.harvard.edu/local-bubble-star-formation | title = Star Formation near the Sun is driven by expansion of the Local Bubble | website = The Local Bubble | access-date = 7 February 2022}}
These new stars are typically in molecular clouds like the Taurus molecular cloud and the open star cluster Pleiades.
Connection to radioactive isotopes on Earth
Several radioactive isotopess on Earth have been connected to supernovae occurring relatively nearby to the solar system. The most common source is found in deep sea ferromanganese crustss, which are constantly growing and deposit iron, manganese, and other elements. Samples are divided into layers which are dated, for example, with Beryllium-10. Some of these layers have higher concentrations of radioactive isotopes. The isotope most commonly associated with supernovae on Earth is Iron-60 from deep sea sediments,{{Cite journal |last1=Knie |first1=K. |last2=Korschinek |first2=G. |last3=Faestermann |first3=T. |last4=Wallner |first4=C. |last5=Scholten |first5=J. |last6=Hillebrandt |first6=W. |date=1999-07-01 |title=Indication for Supernova Produced 60Fe Activity on Earth |url=https://ui.adsabs.harvard.edu/abs/1999PhRvL..83...18K |journal=Physical Review Letters |volume=83 |issue=1 |pages=18–21 |doi=10.1103/PhysRevLett.83.18 |bibcode=1999PhRvL..83...18K |issn=0031-9007}} Antarctic snow,{{Cite journal |last1=Koll |first1=Dominik |last2=Korschinek |first2=Gunther |last3=Faestermann |first3=Thomas |last4=Gómez-Guzmán |first4=J. M. |last5=Kipfstuhl |first5=Sepp |last6=Merchel |first6=Silke |last7=Welch |first7=Jan M. |date=2019-08-01 |title=Interstellar 60Fe in Antarctica |url=https://ui.adsabs.harvard.edu/abs/2019PhRvL.123g2701K |journal=Physical Review Letters |volume=123 |issue=7 |pages=072701 |doi=10.1103/PhysRevLett.123.072701 |pmid=31491090 |bibcode=2019PhRvL.123g2701K |issn=0031-9007|hdl=1885/298253 |hdl-access=free }} and lunar soil.{{Cite journal |last1=Fimiani |first1=L. |last2=Cook |first2=D. L. |last3=Faestermann |first3=T. |last4=Gómez-Guzmán |first4=J. M. |last5=Hain |first5=K. |last6=Herzog |first6=G. |last7=Knie |first7=K. |last8=Korschinek |first8=G. |last9=Ludwig |first9=P. |last10=Park |first10=J. |last11=Reedy |first11=R. C. |last12=Rugel |first12=G. |date=2016-04-01 |title=Interstellar Fe 60 on the Surface of the Moon |url=https://ui.adsabs.harvard.edu/abs/2016PhRvL.116o1104F |journal=Physical Review Letters |volume=116 |issue=15 |pages=151104 |doi=10.1103/PhysRevLett.116.151104 |pmid=27127953 |bibcode=2016PhRvL.116o1104F |issn=0031-9007}} Other isotopes are Manganese-53{{Cite journal |last1=Korschinek |first1=G. |last2=Faestermann |first2=T. |last3=Poutivtsev |first3=M. |last4=Arazi |first4=A. |last5=Knie |first5=K. |last6=Rugel |first6=G. |last7=Wallner |first7=A. |date=2020-07-01 |title=Supernova-Produced 53Mn on Earth |url=https://ui.adsabs.harvard.edu/abs/2020PhRvL.125c1101K |journal=Physical Review Letters |volume=125 |issue=3 |pages=031101 |doi=10.1103/PhysRevLett.125.031101 |pmid=32745435 |bibcode=2020PhRvL.125c1101K |issn=0031-9007}} and Plutonium-244{{Cite journal |last1=Wallner |first1=A. |last2=Froehlich |first2=M. B. |last3=Hotchkis |first3=M. A. C. |last4=Kinoshita |first4=N. |last5=Paul |first5=M. |last6=Martschini |first6=M. |last7=Pavetich |first7=S. |last8=Tims |first8=S. G. |last9=Kivel |first9=N. |last10=Schumann |first10=D. |last11=Honda |first11=M. |last12=Matsuzaki |first12=H. |last13=Yamagata |first13=T. |date=2021-05-01 |title=60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae |url=https://ui.adsabs.harvard.edu/abs/2021Sci...372..742W |journal=Science |volume=372 |issue=6543 |pages=742–745 |doi=10.1126/science.aax3972 |pmid=33986180 |bibcode=2021Sci...372..742W |issn=0036-8075}} from deep sea materials. Supernova-originated Aluminium-26, which was expected from cosmic ray studies, was not confirmed.{{Cite journal |last1=Feige |first1=Jenny |last2=Wallner |first2=Anton |last3=Altmeyer |first3=Randolf |last4=Fifield |first4=L. Keith |last5=Golser |first5=Robin |last6=Merchel |first6=Silke |last7=Rugel |first7=Georg |last8=Steier |first8=Peter |last9=Tims |first9=Stephen G. |last10=Winkler |first10=Stephan R. |date=2018-11-01 |title=Limits on Supernova-Associated Fe 60 /Al 26 Nucleosynthesis Ratios from Accelerator Mass Spectrometry Measurements of Deep-Sea Sediments |url=https://ui.adsabs.harvard.edu/abs/2018PhRvL.121v1103F |journal=Physical Review Letters |volume=121 |issue=22 |pages=221103 |doi=10.1103/PhysRevLett.121.221103 |pmid=30547642 |bibcode=2018PhRvL.121v1103F |issn=0031-9007|hdl=1885/201559 |hdl-access=free }} Iron-60 and Manganese-53 have a peak 1.7–3.2 million years ago, and Iron-60 has a second peak 6.5–8.7 million years ago. The older peak likely originated when the solar system moved through the Orion–Eridanus Superbubble and the younger peak was generated when the solar system entered the Local Bubble 4.5 million years ago.{{Cite journal |last1=Schulreich |first1=M. M. |last2=Feige |first2=J. |last3=Breitschwerdt |first3=D. |date=2023-12-01 |title=Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble. II. Advanced modelling of interstellar 26Al, 53Mn, 60Fe, and 244Pu influxes as traces of past supernova activity in the solar neighbourhood |url=https://ui.adsabs.harvard.edu/abs/2023A&A...680A..39S |journal=Astronomy and Astrophysics |volume=680 |pages=A39 |doi=10.1051/0004-6361/202347532 |issn=0004-6361|arxiv=2309.13983 |bibcode=2023A&A...680A..39S }} One of the supernovae creating the younger peak might have created the pulsar PSR B1706-16 and turned Zeta Ophiuchi into a runaway star. Both originated from UCL and were released by a supernova 1.78 ± 0.21 million years ago.{{Cite journal |last1=Neuhäuser |first1=R. |last2=Gießler |first2=F. |last3=Hambaryan |first3=V. V. |date=2020-10-01 |title=A nearby recent supernova that ejected the runaway star ζ Oph, the pulsar PSR B1706-16, and 60Fe found on Earth |journal=Monthly Notices of the Royal Astronomical Society |volume=498 |issue=1 |pages=899–917 |doi=10.1093/mnras/stz2629 |doi-access=free |issn=0035-8711|arxiv=1909.06850 |bibcode=2020MNRAS.498..899N }} Another explanation for the older peak is that it was produced by one supernova in the Tucana-Horologium association 7-9 million years ago.{{Cite journal |last1=Hyde |first1=M. |last2=Pecaut |first2=M. J. |date=2018-01-01 |title=Supernova ejecta in ocean cores used as time constraints for nearby stellar groups |url=https://ui.adsabs.harvard.edu/abs/2018AN....339...78H |journal=Astronomische Nachrichten |volume=339 |issue=1 |pages=78–86 |doi=10.1002/asna.201713375 |issn=0004-6337|arxiv=1712.05466 |bibcode=2018AN....339...78H }}
See also
{{div col|colwidth=28em}}
- Gould Belt
- List of nearest stars and brown dwarfs
- List of nearby stellar associations and moving groups
- List of Milky Way streams
- Orion–Eridanus Superbubble
- Orion Arm
- Superbubble
{{div col end}}
References
{{reflist|25em}}
Further reading
- {{cite journal
|last=Anderson |first=Mark
|date=6 January 2007
|title=Don't stop till you get to the Fluff
|journal=New Scientist
|volume=193 |issue=2585 |pages=26–30
|doi=10.1016/S0262-4079(07)60043-8
|url=https://www.sciencedirect.com/science/article/abs/pii/S0262407907600438
|url-access=subscription |access-date=2020-09-05
}}
- {{cite journal
|last1= Lallement |first1=R.
|last2= Welsh |first2=B.Y.
|last3= Vergely |first3=J.L.
|last4= Crifo |first4=F.
|last5= Sfeir |first5=D.
|date=1 December 2003
|title=3D mapping of the dense interstellar gas around the Local Bubble
|journal=Astronomy & Astrophysics
|volume=411 |issue=3 |pages=447–464
|doi=10.1051/0004-6361:20031214 |doi-access=free
|bibcode=2003A&A...411..447L
}}
- {{cite web
|title=Near-Earth supernovas
|date=6 January 2003
|website=Science@NASA Headline News
|publisher=NASA
|url=https://science.nasa.gov/science-news/science-at-nasa/2003/06jan_bubble/
}}
- {{cite web
|title=A breeze from the stars
|date=17 December 2004
|website=Science@NASA Headline News
|publisher=NASA
|url=https://science.nasa.gov/science-news/science-at-nasa/2004/17dec_heliumstream/
}}
External links
- {{Commons category-inline}}
- {{cite web |title=A 3D map of the Milky Way galaxy and the Orion Arm |website=3dgalaxymap.com |url=http://www.3dgalaxymap.com/}}
{{Earth's location}}
{{Solar System}}
{{Supernovae}}
{{Portal bar|Stars|Spaceflight|Science}}