1,1′-Bi-2-naphthol
{{chembox
| verifiedrevid = 413087241
| Name = 1,1{{prime}}-Bi-2-naphthol
| ImageFile =
| ImageFileL1 = R-BINOL-2D-skeletal.png
| ImageNameL1 = Skeletal formula of R-BINOL
| ImageFileR1 = S-BINOL-2D-skeletal.png
| ImageNameR1 = Skeletal formula of S-BINOL
| ImageFileL2 = R-BINOL-3D-balls.png
| ImageNameL2 = Ball-and-stick model of R-BINOL
| ImageFileR2 = S-BINOL-3D-balls.png
| ImageNameR2 = Ball-and-stick model of S-BINOL
| ImageCaptionL2 = (R)-(+)-BINOL
| ImageCaptionR2 = (S)-(−)-BINOL
| PIN = [1,1{{prime}}-Binaphthalene]-2,2{{prime}}-diol
| OtherNames = {{Unbulleted list
| 1,1{{prime}}-Bi-2-naphthol
| 1,1-Binaphthol
| BINOL
| Binol
}}
| SystematicName =
| Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 11269
| PubChem = 11762
| InChI = 1/C20H14O2/c21-17-11-9-13-5-1-3-7-15(13)19(17)20-16-8-4-2-6-14(16)10-12-18(20)22/h1-12,21-22H
| InChIKey = PPTXVXKCQZKFBN-UHFFFAOYAX
| SMILES = C1=CC=C2C(=C1)C=CC(=C2C3=C(C=CC4=CC=CC=C43)O)O
| SMILES_Comment = (R/S)
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 138718
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C20H14O2/c21-17-11-9-13-5-1-3-7-15(13)19(17)20-16-8-4-2-6-14(16)10-12-18(20)22/h1-12,21-22H
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = PPTXVXKCQZKFBN-UHFFFAOYSA-N
| CASNo = 602-09-5
| CASNo_Comment = (R/S)
| CASNo1 = 18531-94-7
| CASNo1_Comment = (R)-(+)
| CASNo2 = 18531-99-2
| CASNo2_Comment = (S)-(−)
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 25AB254328
| UNII_Comment = (R/S)
| UNII1_Ref = {{fdacite|correct|FDA}}
| UNII1 = M6IDZ128WT
| UNII1_Comment = (R)-(+)
| UNII2_Ref = {{fdacite|correct|FDA}}
| UNII2 = 54OT5RRV4C
| UNII2_Comment = (S)-(−)
}}
| Section2 = {{Chembox Properties
| Formula =
| C=20 | H=14 | O=2
| MolarMass = 286.32 g/mol
| Density =
| MeltingPtC = 205 to 211
| MeltingPt_ref = [http://www.chemexper.com/chemicals/supplier/cas/18531-94-7.html Datasheet], chemexper.com
}}
| Section3 =
| Section4 =
| Section5 =
| Section6 =
}}
1,1{{prime}}-Bi-2-naphthol (BINOL) is an organic compound that is often used as a ligand for transition-metal catalysed asymmetric synthesis. BINOL has axial chirality and the two enantiomers can be readily separated and are stable toward racemisation. The specific rotation of the two enantiomers is 35.5° (c = 1 in THF), with the R enantiomer being the dextrorotary one. BINOL is a precursor for another chiral ligand called BINAP. The volumetric mass density of the two enantiomers is 0.62 g cm{{sup|−3}}.{{citation needed|date=January 2022}}
Preparation
The organic synthesis of BINOL is not a challenge as such but the preparation of the individual enantiomers is.
(S)-BINOL can be prepared directly from an asymmetric oxidative coupling of 2-naphthol with copper(II) chloride. The chiral ligand in this reaction is (S)-(+)-amphetamine.{{cite journal|last1 = Brussee|first1 = J.|last2 = Jansen|first2 = A. C. A.|year = 1983|title = A highly stereoselective synthesis of S-(−)-[1,1{{prime}}-binaphthalene]-2,2{{prime}}-diol|journal = Tetrahedron Letters|volume = 24|issue = 31|pages = 3261–3262|doi = 10.1016/S0040-4039(00)88151-4}}
Racemic BINOL can also be produced using iron(III) chloride as an oxidant. The mechanism involves complexation of iron(III) into the hydroxyl, followed by a radical coupling reaction of the naphthol rings initiated by iron(III) reducing into iron(II).
Optically active BINOL can also be obtained from racemic BINOL by optical resolution. In one method, the alkaloid N-benzylcinchonidinium chloride forms a crystalline inclusion compound. The inclusion compound of the (S)-enantiomer is soluble in acetonitrile but that of the (R)-enantiomer is not.[http://www.orgsyn.org/orgsyn/prep.asp?prep=v76p0001 "RESOLUTION OF 1,1'-BI-2-NAPHTHOL"] {{Webarchive|url=https://web.archive.org/web/20120716191712/http://www.orgsyn.org/orgsyn/prep.asp?prep=v76p0001 |date=2012-07-16 }}, Dongwei Cai, David L. Hughes, Thomas R. Verhoeven, and Paul J. Reider, in Organic Syntheses Coll. Vol. 10, p.93; Vol. 76, p.1 In another method BINOL is esterified with pentanoyl chloride. The enzyme cholesterol esterase hydrolyses the (S)-diester but not the (R)-diester. The (R)-dipentanoate is hydrolysed in a second step with sodium methoxide.[http://www.orgsyn.org/orgsyn/prep.asp?prep=cv9p0077 "(S)-(−)- and (R)-(+)-1,1{{prime}}-bi-2-naphthol"] {{Webarchive|url=https://web.archive.org/web/20050418112746/http://www.orgsyn.org/orgsyn/prep.asp?prep=CV9P0077 |date=2005-04-18 }}, Romas J. Kazlauskas in Organic Syntheses, Coll. Vol. 9, p.77; Vol. 70, p.60 The third method employs HPLC with chiral stationary phases.{{cite journal|last1 = Landek|first1 = G.|last2 = Vinković|first2 = M.|last3 = Kontrec|first3 = D.|last4 = Vinković|first4 = V.|year = 2006| title = Influence of mobile phase and temperature on separation of 1,1{{prime}}-binaphthyl-2,2{{prime}}-diol enantiomers with brush type chiral stationary phases derived from L-leucine|journal = Chromatographia|volume = 64|issue = 7–8|pages = 469–473|doi = 10.1365/s10337-006-0041-5| s2cid=95785346 }}
BINOL derivatives
File:Chiral phosphoric acid.png derived from BINOL.{{cite journal |doi=10.1021/cr5001496|title=Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates|year=2014|last1=Parmar|first1=Dixit|last2=Sugiono|first2=Erli|last3=Raja|first3=Sadiya|last4=Rueping|first4=Magnus|journal=Chemical Reviews|volume=114|issue=18|pages=9047–9153|pmid=25203602|doi-access=free}}]]
Aside from the starting materials derived directly from the chiral pool, (R)- and (S)-BINOL in high enantiopurity (>99% enantiomeric excess) are two of the most inexpensive sources of chirality for organic synthesis, costing less than US$0.60 per gram when purchased in bulk from chemical suppliers.{{Cite journal|last1=Yang|first1=Jin-Fei|last2=Wang|first2=Rong-Hua|last3=Wang|first3=Yin-Xia|last4=Yao|first4=Wei-Wei|last5=Liu|first5=Qi-Sheng|last6=Ye|first6=Mengchun|date=2016-10-11|title=Ligand-Accelerated Direct C−H Arylation of BINOL: A Rapid One-Step Synthesis of Racemic 3,3{{prime}}-Diaryl BINOLs|journal=Angewandte Chemie International Edition|language=en|volume=55|issue=45|pages=14116–14120|doi=10.1002/anie.201607893|pmid=27726256 |issn=1433-7851}} As a consequence, it serves as an important starting material for other sources of chirality for stereoselective synthesis, both stoichiometric and substoichiometric (catalytic).
Many important chiral ligands are constructed from the binaphthyl scaffold and ultimately derived from BINOL as a starting material, BINAP being one of the most well known and important.
The compound aluminium lithium bis(binaphthoxide) (ALB) is prepared by reaction of BINOL with lithium aluminium hydride.A practical large-scale synthesis of enantiomerically pure 3-[bis(methoxycarbonyl)methyl]cyclohexanone via catalytic asymmetric Michael reaction Tetrahedron, Volume 58, Issue 13, 25 March 2002, Pages 2585–2588 Youjun Xu, Ken Ohori, Takashi Ohshima, Masakatsu Shibasaki {{doi|10.1016/S0040-4020(02)00141-2}} In a different stoichiometric ratio (1:1 BINOL/LiAlH4 instead of 2:1), the chiral reducing agent BINAL (lithium dihydrido(binaphthoxy)aluminate) is produced.{{Citation|last1=Gopalan|first1=Aravamudan S.|title=Lithium Aluminum Hydride-2,2{{prime}}-Dihydroxy-1,1{{prime}}-binaphthyl|date=2001-04-15|encyclopedia=Encyclopedia of Reagents for Organic Synthesis|publisher=John Wiley & Sons, Ltd|language=en|doi=10.1002/047084289x.rl041|isbn=0471936235|last2=Jacobs|first2=Hollie K.}}
It has been employed in an asymmetric Michael reaction with cyclohexenone and dimethyl malonate:
See also
References
{{Reflist}}
{{DEFAULTSORT:Bi-2-Naphthol, 1, 1'-}}