16-cell honeycomb honeycomb

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|16-cell honeycomb honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{3,3,4,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|3|node|3|node|4|node|3|node|3|node}}
bgcolor=#e7dcc3|5-faces50px {3,3,4,3}
bgcolor=#e7dcc3|4-faces50px {3,3,4}
bgcolor=#e7dcc3|Cells50px {3,3}
bgcolor=#e7dcc3|Faces50px {3}
bgcolor=#e7dcc3|Cell figure50px {3}
bgcolor=#e7dcc3|Face figure50px {3,3}
bgcolor=#e7dcc3|Edge figure50px {4,3,3}
bgcolor=#e7dcc3|Vertex figure50px {3,4,3,3}
bgcolor=#e7dcc3|Dualself-dual
bgcolor=#e7dcc3|Coxeter group{{overline|X}}5, [3,3,4,3,3]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 5-space, the 16-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,4,3,3}, it has three 16-cell honeycombs around each cell. It is self-dual.

Related honeycombs

It is related to the regular Euclidean 4-space 16-cell honeycomb, {3,3,4,3}.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{ISBN|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)

Category:Honeycombs (geometry)