1 52 honeycomb

{{DISPLAYTITLE:1 52 honeycomb}}

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|152 honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform tessellation
bgcolor=#e7dcc3|Family1k2 polytope
bgcolor=#e7dcc3|Schläfli symbol{3,35,2}
bgcolor=#e7dcc3|Coxeter symbol152
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
bgcolor=#e7dcc3|8-face types142 25px
151 25px
bgcolor=#e7dcc3|7-face types132 25px
141 25px
bgcolor=#e7dcc3|6-face types122 25px
{31,3,1} 25px
{35} 25px
bgcolor=#e7dcc3|5-face types121 25px
{34} 25px
bgcolor=#e7dcc3|4-face type111 25px
{33} 25px
bgcolor=#e7dcc3|Cells{32} 25px
bgcolor=#e7dcc3|Faces{3}25px
bgcolor=#e7dcc3|Vertex figurebirectified 8-simplex:
t2{37} 25px
bgcolor=#e7dcc3|Coxeter group{\tilde{E}}_8, [35,2,1]

In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family.

Construction

It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

: {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

Removing the node on the end of the 2-length branch leaves the 8-demicube, 151.

: {{CDD|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

Removing the node on the end of the 5-length branch leaves the 142.

: {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 8-simplex, 052.

: {{CDD|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

{{-}}

Related polytopes and honeycombs

{{1 k2 polytopes}}

See also

References

  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, {{ISBN|978-0-486-40919-1}} (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter Regular Polytopes (1963), Macmillan Company
  • Regular Polytopes, Third edition, (1973), Dover edition, {{ISBN|0-486-61480-8}} (Chapter 5: The Kaleidoscope)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}, [https://books.google.com/books?id=fUm5Mwfx8rAC&dq=Coxeter&pg=PP1 GoogleBook]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

{{Honeycombs}}

Category:9-polytopes

Category:E8 (mathematics)