1 52 honeycomb
{{DISPLAYTITLE:1 52 honeycomb}}
class="wikitable" align="right" style="margin-left:10px" width="280"
!bgcolor=#e7dcc3 colspan=2|152 honeycomb | |
bgcolor=#ffffff align=center colspan=2|(No image) | |
bgcolor=#e7dcc3|Type | Uniform tessellation |
bgcolor=#e7dcc3|Family | 1k2 polytope |
bgcolor=#e7dcc3|Schläfli symbol | {3,35,2} |
bgcolor=#e7dcc3|Coxeter symbol | 152 |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
bgcolor=#e7dcc3|8-face types | 142 25px 151 25px |
bgcolor=#e7dcc3|7-face types | 132 25px 141 25px |
bgcolor=#e7dcc3|6-face types | 122 25px {31,3,1} 25px {35} 25px |
bgcolor=#e7dcc3|5-face types | 121 25px {34} 25px |
bgcolor=#e7dcc3|4-face type | 111 25px {33} 25px |
bgcolor=#e7dcc3|Cells | {32} 25px |
bgcolor=#e7dcc3|Faces | {3}25px |
bgcolor=#e7dcc3|Vertex figure | birectified 8-simplex: t2{37} 25px |
bgcolor=#e7dcc3|Coxeter group | , [35,2,1] |
In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family.
Construction
It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram.
: {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
Removing the node on the end of the 2-length branch leaves the 8-demicube, 151.
: {{CDD|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
Removing the node on the end of the 5-length branch leaves the 142.
: {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 8-simplex, 052.
: {{CDD|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
{{-}}
Related polytopes and honeycombs
{{1 k2 polytopes}}
See also
References
- Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, {{ISBN|978-0-486-40919-1}} (Chapter 3: Wythoff's Construction for Uniform Polytopes)
- Coxeter Regular Polytopes (1963), Macmillan Company
- Regular Polytopes, Third edition, (1973), Dover edition, {{ISBN|0-486-61480-8}} (Chapter 5: The Kaleidoscope)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}, [https://books.google.com/books?id=fUm5Mwfx8rAC&dq=Coxeter&pg=PP1 GoogleBook]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
{{Honeycombs}}