5-Amino-1-pentanol
{{Chembox
| ImageFile = 5-Amino-1-pentanol Struktur.svg
| ImageSize = 200px
| ImageAlt =
| IUPACName =
| OtherNames =
| Section1 = {{Chembox Identifiers
| CASNo = 2508-29-4
| CASNo_Ref = {{Cascite|correct|CAS}}
| ChEMBL = 333552
| ChemSpiderID = 68156
| EC_number = 219-718-2
| PubChem = 75634
| StdInChI=1S/C5H13NO/c6-4-2-1-3-5-7/h7H,1-6H2
| StdInChIKey = LQGKDMHENBFVRC-UHFFFAOYSA-N
| SMILES = C(CCN)CCO
}}
| Section2 = {{Chembox Properties
| Formula = C5H13NO
| MolarMass = 103.16 g·mol−1
| Appearance =
| Density = 0.9488 at 17 °C
| MeltingPtC = 38.5
| BoilingPtC = 221.5
| Solubility =
}}
| Section3 = {{Chembox Hazards
| MainHazards =
| FlashPt =
| AutoignitionPt =
| GHSPictograms = {{GHS05}}{{GHS07}}
| GHSSignalWord = Danger
| HPhrases = {{H-phrases|302|314}}
| PPhrases = {{P-phrases|260|264|264+265|270|280|301+317|301+330+331|302+361+354|304+340|305+354+338|316|317|321|330|363|405|501}}
}}
}}
5-Amino-1-pentanol is an amino alcohol with a primary amino group and a primary hydroxy group at the ends of a linear C5-alkanes. As a derivative of the platform chemical furfural (that is easily accessible from pentoses), 5-amino-1-pentanol may become increasingly important in the future as a building block for biodegradable polyesteramides and as a starting material for valerolactam — the monomer for polyamides.
Occurrence and preparation
The complete hydrogenation of furfural (furan-2-aldehyde) yields tetrahydrofurfuryl alcohol (2-hydroxymethyltetrahydrofuran), which undergoes ring expansion upon dehydration to give dihydropyran. Dihydropyran reacts with ammonia in a reductive amination under ring opening to produce 5-amino-1-pentanol.{{citation |author=X. Li |author2=J. Tian |author3=H. Liu |author4=X. Hu |author5=J. Zhang |author6=C. Xia |author7=J. Chen |author8=H. Liu |author9=Z. Huang |date=2020|doi=10.1021/acssuschemeng.0c00394|issue=23|pages=6352–6362|journal=ACS Sustain. Chem. Eng.|title=Efficient Synthesis of 5-Amino-1-pentanol from Biomass-Derived Dihydropyran over Hydrotalcite-Based Ni–Mg3AlOx Catalysts|volume=8|s2cid=216508238 }}
File:5-Amino-1-pentanol aus Dihydropyran.svg
Product yields of up to 85% can be achieved with a continuous process using a nickel-hydrotalcite catalyst.
Similarly, the hemiacetal 2-hydroxytetrahydropyran{{citation |author=T. Oishi |author2=M. Kanemoto |author3=R. Swasono |author4=N. Matsumori |author5=M. Murata |date=2008|doi=10.1021/ol802168r|issue=22|pages=5203–5206|journal=Org. Lett.|title=Combinatorial Synthesis of the 1,5-Polyol System Based on Cross Metathesis: Structure Revision of Amphidinol 3|volume=10|pmid=18959425 }} that is formed from dihydropyran with hydrochloric acid can be converted to 5-amino-1-pentanol by reductive amidation with ammonia and hydrogen upon water elimination.{{citation|author=J. Zhang |display-authors=etal |date=2021|doi=10.1039/D0NJ04962J|issue=9|pages=4236–4245|periodical=New J. Chem.|title=Reductive amination of bio-based 2-hydroxytetrahydropyran to 5-amino-1-pentanol over nano-Ni-Al2O3 catalysts|volume=45|s2cid=234007765 }}
Properties
5-Amino-1-pentanol forms white crystalline clumps at solidification temperatures around 35 °C, which dissolve in water, ethanol, and acetone.{{citation|author=William M. Haynes|date=2017|isbn=978-1-4987-5429-3|location=Boca Raton, FL |pages=3–22|publisher=CRC Press|title=CRC Handbook of Chemistry and Physics |edition=97th}} The aqueous solution (500 g-l−1) reacts strongly alkaline (pH 13.2 at 20 °C).{{Sigma-Aldrich|Sigma|A5681|Name=5-Amino-1-pentanol|Abruf=2022-04-12}}
Reactions
Amino alcohols such as 5-amino-1-pentanol have been studied for their suitability of absorption of carbon dioxide.{{citation |author=P. Singh |author2=G.F. Versteeg|date=2008|doi=10.1016/j.psep.2008.03.005|issue=5|pages=347–359|journal=Process Saf. Environ. Prot.|title=Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents|volume=86|url=https://pure.rug.nl/ws/files/14529543/2008_Process-Saf.Environ.Prot.Singh.pdf }}{{citation |author=S. Oa |author2=B.-J. Kim |author3=J.-W. Park |date=2020|doi=10.1680/jadcr.18.00198 |issue=11|pages=502–509|journal=Adv. Cement Res.|title=Effects of carbonation on carbon dioxide capture and the mechanical properties of concrete with amine sorbents|volume=32|s2cid=155957571 }}
5-Amino-1-pentanol dehydrates when heated over ytterbium(III) oxide (Yb2O3) to give 4-penten-1-amine (I). Also formed piperidine (II), 2,3,4,5-tetrahydropyridine (III), and 1-pentylamine (IV).{{citation |author=K. Ohta |author2=Y. Yamada |author3=S. Sato |date=2016|doi=10.1016/j.apcata.2016.03.001|pages=73–80|journal=Appl. Catal A: General|title=Dehydration of 5-amino-1-pentanol over rare earth oxides|volume=517}}
File:5-Amino-1-pentanol Dehydratisierung.svg
Being bifunctional, 5-amino-1-pentanol reacts in a polycondensation reaction with esters of dicarboxylic acids (or their cyclic acid anhydrides, such as succinic anhydride) to give polyesteramides. These polymers have been investigated as biodegradable plastics, e.g. absorbable sutures.{{Cite patent|country= US|number=4209607 |title=Polyesteramides derived from bis-oxamidodiols and dicarboxylic acids|pubdate=1980-6-24 |fdate=1978-5-12 |invent1=S.W. Shalaby |invent2=D.D. Jamiolkowski |assign=Ethicon, Inc. }}{{citation |author=S.K. Murase |author2=J. Puiggali |date=2014 |editor=S.G. Kumbar |editor2=C.T. Laurencin |editor3=M. Deng |isbn=978-0-12-396983-5|location=Amsterdam|pages=154–166|publisher=Elsevier |title=Natural and Synthetic Biomedical Polymers |chapter=Poly(ester amides)s: Recent Developments on Synthesis and Applications}} During the reaction, the succinic anhydride reacts initially with the nucleophilic amino group to form an ω-hydroxycarboxylic acid, which is subsequently polycondensed with carbodiimides, such as the hydrochloride of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimides (EDC-HCl).
File:5-Amino-1-pentanol Polyesteramide.svg
In a dehydrogenation, catalyzed by rhodium and ruthenium complexes, valerolactam, the δ-lactam of 5-aminopentanoic acid, is formed from 5-amino-1-pentanol in high (94%) yield.{{citation |author=M. Trincado |author2=K. Kühlein |author3=H. Grützmacher |date=2011|doi=10.1002/chem.201101084|issue=42|pages=11905–11913|journal=Chem. Eur. J.|title=Metal-Ligand Cooperation in the Catalytic Dehydrogenative Coupling (DHC) of Polyalcohols to Carboxylic Acid Derivatives|volume=17|pmid=21901769 }}{{citation |author=D. Pingen |author2=D. Vogt |date=2014|doi=10.1039/C3CY00513E|pages=47–52|journal=Catal. Sci. Technol.|title=Amino-alcohol cyclization: Selektive synthesis of lactams and cyclic amines from amino-alcohols|volume=4|s2cid=52265163 |doi-access=free|hdl=20.500.11820/6875ce86-a727-49b8-949f-f71a172043a3|hdl-access=free}}
File:5-Amino-1-pentanol Valerolactam-Bildung.svg
Valerolactam could be of relevance for polyamide 5. Polyamide 5 has garnered little attention so far but is of interest due to its ferroelectricity.{{citation |author=T. von Tiedemann |author2=S. Anwas |author3=U. Kemmer-Jonas |author4=K. Asadi |author5=H. Frey |date=2020|doi=10.1002/macp.201900468|issue=5|page=1900468|journal=Macromol. Chem. Phys.|title=Synthesis and solution processing of nylon-5 ferroelectric thin films: The renaissance of odd-nylons?|volume=221|hdl=21.11116/0000-0005-A118-A |s2cid=213517034 |hdl-access=free}}