5-orthoplex#Cartesian coordinates
{{Short description|Convex regular 5-polytope in geometry}}
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Regular 5-orthoplex | |
bgcolor=#ffffff align=center colspan=2|281px Orthogonal projection inside Petrie polygon | |
bgcolor=#e7dcc3|Type | Regular 5-polytope |
bgcolor=#e7dcc3|Family | orthoplex |
bgcolor=#e7dcc3|Schläfli symbol | {3,3,3,4} {3,3,31,1} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node|4|node}} {{CDD|node_1|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|4-faces | 32 {33} 25px |
bgcolor=#e7dcc3|Cells | 80 {3,3} 25px |
bgcolor=#e7dcc3|Faces | 80 {3}25px |
bgcolor=#e7dcc3|Edges | 40 |
bgcolor=#e7dcc3|Vertices | 10 |
bgcolor=#e7dcc3|Vertex figure | 60px 16-cell |
bgcolor=#e7dcc3|Petrie polygon | decagon |
bgcolor=#e7dcc3|Coxeter groups | BC5, [3,3,3,4] D5, [32,1,1] |
bgcolor=#e7dcc3|Dual | 5-cube |
bgcolor=#e7dcc3|Properties | convex, Hanner polytope |
In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.
It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211.
It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.
Alternate names
- Pentacross, derived from combining the family name cross polytope with pente for five (dimensions) in Greek.
- Triacontaditeron (or triacontakaiditeron) - as a 32-facetted 5-polytope (polyteron). Acronym: tac{{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/tac.htm (x3o3o3o4o - tac)]}}
As a configuration
This configuration matrix represents the 5-orthoplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element.Coxeter, Regular Polytopes, sec 1.8 ConfigurationsCoxeter, Complex Regular Polytopes, p.117
10 & 8 & 24 & 32 & 16 \\
2 & 40 & 6 & 12 & 8 \\
3 & 3 & 80 & 4 & 4 \\
4 & 6 & 4 & 80 & 2 \\
5 & 10 & 10 & 5 & 32
\end{matrix}\end{bmatrix}
Cartesian coordinates
Cartesian coordinates for the vertices of a 5-orthoplex, centered at the origin are
: (±1,0,0,0,0), (0,±1,0,0,0), (0,0,±1,0,0), (0,0,0,±1,0), (0,0,0,0,±1)
Construction
There are three Coxeter groups associated with the 5-orthoplex, one regular, dual of the penteract with the C5 or [4,3,3,3] Coxeter group, and a lower symmetry with two copies of 5-cell facets, alternating, with the D5 or [32,1,1] Coxeter group, and the final one as a dual 5-orthotope, called a 5-fusil which can have a variety of subsymmetries.
class=wikitable
!Name !Order !Vertex figure(s) | ||||
align=center
!regular 5-orthoplex |{{CDD|node_1|3|node|3|node|3|node|4|node}} |{3,3,3,4} |[3,3,3,4] | 3840
|{{CDD|node_1|3|node|3|node|4|node}} | |||
align=center
!Quasiregular 5-orthoplex |{{CDD|node_1|3|node|3|node|split1|nodes}} |{3,3,31,1} |[3,3,31,1] | 1920
|{{CDD|node_1|3|node|split1|nodes}} | |||
align=center
!rowspan=8|5-fusil | ||||
align=center
|{{CDD|node_f1|4|node|3|node|3|node|3|node}} | {3,3,3,4} | [4,3,3,3] | 3840 | {{CDD|node_f1|4|node|3|node|3|node}} |
align=center
|{{CDD|node_f1|4|node|3|node|3|node|2|node_f1}} | {3,3,4}+{} | [4,3,3,2] | 768 | {{CDD|node_f1|4|node|3|node|2|node_f1}} |
align=center
|{{CDD|node_f1|4|node|3|node|2|node_f1|4|node}} | {3,4}+{4} | [4,3,2,4] | 384 | {{CDD|node_f1|4|node|3|node|2|node_f1}} {{CDD|node_f1|4|node|2|node_f1|4|node}} |
align=center
|{{CDD|node_f1|4|node|3|node|2|node_f1|2|node_f1}} | {3,4}+2{} | [4,3,2,2] | 192 | {{CDD|node_f1|4|node|3|node|2|node_f1}} {{CDD|node_f1|4|node|2|node_f1|2|node_f1}} |
align=center
|{{CDD|node_f1|4|node|2|node_f1|4|node|2|node_f1}} | 2{4}+{} | [4,2,4,2] | 128 | {{CDD|node_f1|4|node|2|node_f1|4|node}} |
align=center
|{{CDD|node_f1|4|node|2|node_f1|2|node_f1|2|node_f1}} | {4}+3{} | [4,2,2,2] | 64 | {{CDD|node_f1|4|node|2|node_f1|2|node_f1}} {{CDD|node_f1|2|node_f1|2|node_f1|2|node_f1}} |
align=center
|{{CDD|node_f1|2|node_f1|2|node_f1|2|node_f1|2|node_f1}} |5{} |[2,2,2,2] | 32
|{{CDD|node_f1|2|node_f1|2|node_f1|2|node_f1}} |
Other images
{{5-cube Coxeter plane graphs|t4|150}}
class=wikitable width=300px]
|align=center|220px |
Related polytopes and honeycombs
{{2 k1 polytopes}}
This polytope is one of 31 uniform 5-polytopes generated from the B5 Coxeter plane, including the regular 5-cube and 5-orthoplex.
{{Penteract family}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- {{KlitzingPolytopes|polytera.htm|5D uniform polytopes (polytera) with acronyms}} x3o3o3o4o - tac {{sfn whitelist| CITEREFKlitzing}}
External links
- {{GlossaryForHyperspace | anchor=Cross | title=Cross polytope }}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}