5-orthoplex honeycomb

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|5-orthoplex honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{3,3,3,4,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|3|node|3|node|3|node|4|node|3|node}}
{{CDD|node_1|3|node|3|node|splitsplit1|branch3|node}} = {{CDD|node_1|3|node|3|node|3|node|4|node_g|3sg|node_g}}
bgcolor=#e7dcc3|5-faces50px {3,3,3,4}
bgcolor=#e7dcc3|4-faces50px {3,3,3}
bgcolor=#e7dcc3|Cells50px {3,3}
bgcolor=#e7dcc3|Faces50px {3}
bgcolor=#e7dcc3|Cell figure50px {3}
bgcolor=#e7dcc3|Face figure50px {4,3}
bgcolor=#e7dcc3|Edge figure50px {3,4,3}
bgcolor=#e7dcc3|Vertex figure50px {3,3,4,3}
bgcolor=#e7dcc3|Dual24-cell honeycomb honeycomb
bgcolor=#e7dcc3|Coxeter group{{overline|U}}5, [3,3,3,4,3]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 5-space, the 5-orthoplex honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,3,4,3}, it has three 5-orthoplexes around each cell. It is dual to the 24-cell honeycomb honeycomb.

Related honeycombs

Its vertex figure is the 16-cell honeycomb, {3,3,4,3}.

See also

References

  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{ISBN|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p. 212-213)

Category:Honeycombs (geometry)