ACTR1A
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
Alpha-centractin (yeast) or ARP1 is a protein that in humans is encoded by the ACTR1A gene.{{cite journal | vauthors = Lees-Miller JP, Helfman DM, Schroer TA | title = A vertebrate actin-related protein is a component of a multisubunit complex involved in microtubule-based vesicle motility | journal = Nature | volume = 359 | issue = 6392 | pages = 244–6 |date=Oct 1992 | pmid = 1528266 | doi = 10.1038/359244a0 | bibcode = 1992Natur.359..244L | s2cid = 4239305 }}{{cite web | title = Entrez Gene: ACTR1A ARP1 actin-related protein 1 homolog A, centractin alpha (yeast)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10121}}
Function
This gene encodes a 42.6 kD subunit of dynactin, a macromolecular complex consisting of 10-11 subunits ranging in size from 22 to 150 kD. Dynactin binds to both microtubules and cytoplasmic dynein. It is involved in a diverse array of cellular functions, including ER-to-Golgi transport, the centripetal movement of lysosomes and endosomes, spindle formation, chromosome movement, nuclear positioning, and axonogenesis. This subunit is present in 8-13 copies per dynactin molecule, and is the most abundant molecule in the dynactin complex. It is an actin-related protein, and is approximately 60% identical at the amino acid level to conventional actin. ARP1 forms a 37 nm filament-like structure and is the core of the dynactin complex.{{cite journal | vauthors = Schafer DA, Gill SR, Cooper JA, Heuser JE, Schroer TA | year = 1994| title = Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin | journal = The Journal of Cell Biology | volume = 126 | issue = 2| pages = 403–412 | doi = 10.1083/jcb.126.2.403 | pmid = 7518465 | pmc = 2200042 }} It only exists in the dynactin complex in vivo. Highly purified, native Arp1 polymerize rapidly at extremely low concentrations into short filaments in vitro that were similar, but not identical, in length to those in dynactin. With time, these Arp1 filaments appeared to anneal to form longer assemblies but never attained the length of conventional actin filaments. As for conventional actin, Arp1 can bind and hydrolyze ATP, and Arp1 assembly is accompanied by nucleotide hydrolysis.{{cite journal | vauthors = Bingham JB, Schroer TA | title = Self-regulated polymerization of the actin-related protein Arp1 | journal = Curr. Biol. | volume = 9 | issue = 4 | pages = 223–6 | year = 1999 | pmid = 10074429 | doi = 10.1016/S0960-9822(99)80095-5 | s2cid = 208851 | doi-access = free }}
It has been reported that Arp1 interacts with other dynactin components including DCTN1/p150Glued,{{cite journal | vauthors = Waterman-Storer CM, Karki S, Holzbaur EL | title = The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1) | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 92 | issue = 5 | pages = 1634–8 | year = 1995 | pmid = 7878030 | pmc = 42574 | doi = 10.1073/pnas.92.5.1634 | bibcode = 1995PNAS...92.1634W | doi-access = free }} DCTN4/p62{{cite journal | vauthors = Garces JA, Clark IB, Meyer DI, Vallee RB | title = Interaction of the p62 subunit of dynactin with Arp1 and the cortical actin cytoskeleton | journal = Curr. Biol. | volume = 9 | issue = 24 | pages = 1497–500 | year = 1999 | pmid = 10607597 | doi = 10.1016/S0960-9822(00)80122-0 | s2cid = 10924633 | doi-access = free }}{{cite journal | vauthors = Karki S, Tokito MK, Holzbaur EL | title = A dynactin subunit with a highly conserved cysteine-rich motif interacts directly with Arp1 | journal = J. Biol. Chem. | volume = 275 | issue = 7 | pages = 4834–9 | year = 2000 | pmid = 10671518 | doi = 10.1074/jbc.275.7.4834| doi-access = free }} and Actr10/Arp11.{{cite journal | vauthors = Eckley DM, Schroer TA | title = Interactions between the evolutionarily conserved, actin-related protein, Arp11, actin, and Arp1 | journal = Mol. Biol. Cell | volume = 14 | issue = 7 | pages = 2645–54 | year = 2003 | pmid = 12857853 | pmc = 165665 | doi = 10.1091/mbc.E03-01-0049 }} Arp1 has been shown as the domain for dynactin binding to membrane vesicles (such as Golgi or late endosome) through its association with β-spectrin.{{cite journal | vauthors = Holleran EA, Tokito MK, Karki S, Holzbaur EL | title = Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles | journal = J. Cell Biol. | volume = 135 | issue = 6 Pt 2 | pages = 1815–29 | year = 1996 | pmid = 8991093 | pmc = 2133946 | doi = 10.1083/jcb.135.6.1815}}{{cite journal | vauthors = Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL | title = beta III spectrin binds to the Arp1 subunit of dynactin | journal = J. Biol. Chem. | volume = 276 | issue = 39 | pages = 36598–605 | year = 2001 | pmid = 11461920 | doi = 10.1074/jbc.M104838200 | doi-access = free }}{{cite journal | vauthors = Muresan V, Stankewich MC, Steffen W, Morrow JS, Holzbaur EL, Schnapp BJ | title = Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids | journal = Mol. Cell | volume = 7 | issue = 1 | pages = 173–83 | year = 2001 | pmid = 11172722 | doi = 10.1016/S1097-2765(01)00165-4 | doi-access = free }}{{cite journal | vauthors = Johansson M, Rocha N, Zwart W, Jordens I, Janssen L, Kuijl C, Olkkonen VM, Neefjes J | title = Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin | journal = J. Cell Biol. | volume = 176 | issue = 4 | pages = 459–71 | year = 2007 | pmid = 17283181 | pmc = 2063981 | doi = 10.1083/jcb.200606077 }}
Interactions
ACTR1A has been shown to interact with SPTBN2.{{cite journal | vauthors = Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C | title = LDL-receptor-related protein 6 is a receptor for Dickkopf proteins | journal = Nature | volume = 411 | issue = 6835 | pages = 321–5 | year = 2001 | pmid = 11357136 | doi = 10.1038/35077108 | bibcode = 2001Natur.411..321M | s2cid = 4323027 }}
References
{{Reflist}}
Further reading
{{Refbegin | 2}}
- {{cite journal | vauthors=Clark SW, Meyer DI |title=Centractin is an actin homologue associated with the centrosome |journal=Nature |volume=359 |issue= 6392 |pages= 246–50 |year= 1992 |pmid= 1356230 |doi= 10.1038/359246a0 |bibcode=1992Natur.359..246C |s2cid=4352549 }}
- {{cite journal | vauthors=Clark SW, Staub O, Clark IB |title=Beta-centractin: characterization and distribution of a new member of the centractin family of actin-related proteins |journal=Mol. Biol. Cell |volume=5 |issue= 12 |pages= 1301–10 |year= 1995 |pmid= 7696711 |doi= 10.1091/mbc.5.12.1301| pmc=301159 |display-authors=etal}}
- {{cite journal | vauthors=Faulkner NE, Vig B, Echeverri CJ |title=Localization of motor-related proteins and associated complexes to active, but not inactive, centromeres |journal=Hum. Mol. Genet. |volume=7 |issue= 4 |pages= 671–7 |year= 1998 |pmid= 9499420 |doi=10.1093/hmg/7.4.671 |display-authors=etal|doi-access=free }}
- {{cite journal | vauthors=Heimann K, Percival JM, Weinberger R |title=Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles |journal=J. Biol. Chem. |volume=274 |issue= 16 |pages= 10743–50 |year= 1999 |pmid= 10196146 |doi=10.1074/jbc.274.16.10743 |display-authors=etal|doi-access=free }}
- {{cite journal | vauthors=Clark IB, Meyer DI |title=Overexpression of normal and mutant Arp1alpha (centractin) differentially affects microtubule organization during mitosis and interphase |journal=J. Cell Sci. |volume=112 |issue= 20|pages= 3507–18 |year= 2000 |doi=10.1242/jcs.112.20.3507 |pmid= 10504299 }}
- {{cite journal | vauthors=Saffery R, Irvine DV, Griffiths B |title=Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins |journal=Hum. Mol. Genet. |volume=9 |issue= 2 |pages= 175–85 |year= 2000 |pmid= 10607828 |doi=10.1093/hmg/9.2.175 |display-authors=etal|doi-access=free }}
- {{cite journal | vauthors=Fouquet J, Kann M, Souès S, Melki R |title=ARP1 in Golgi organisation and attachment of manchette microtubules to the nucleus during mammalian spermatogenesis |journal=J. Cell Sci. |volume=113 |issue= 5|pages= 877–86 |year= 2000 |doi=10.1242/jcs.113.5.877 |pmid= 10671377 }}
- {{cite journal | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA Cloning Using In Vitro Site-Specific Recombination |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000 | pmc=310948 }}
- {{cite journal | vauthors=Carew JA, Jackson AA, Bauer KA |title=ARP1 interacts with the 5' flanking region of the coagulation factor VII gene |journal=J. Thromb. Haemost. |volume=1 |issue= 6 |pages= 1220–7 |year= 2004 |pmid= 12871323 |doi=10.1046/j.1538-7836.2003.00227.x |s2cid=13442414 |doi-access=free }}
{{Refend}}
External links
- {{UCSC genome browser|ACTR1A}}
- {{UCSC gene details|ACTR1A}}