A Course of Modern Analysis
{{Short description|Textbook in mathematical analysis}}
{{Use dmy dates|date=November 2020|cs1-dates=y}}
{{Use list-defined references|date=December 2021}}
{{Use British English|date=November 2020}}
{{Infobox book
| italic title =
| name = A Course of Modern Analysis
| image = File:A Course of Modern Analysis plain cover.jpg
| image_size =
| alt = Plain blue book cover with title, author, and a white ribbon along the bottom stating "Cambridge Mathematical Library".
| caption = Cover of a 1996 reissue of the fourth edition of the book.
| author = Edmund T. Whittaker and George N. Watson
| audio_read_by =
| title_orig =
| orig_lang_code =
| title_working =
| translator =
| illustrator =
| cover_artist =
| country =
| language = English
| series =
| release_number =
| subject = Mathematics
| genre =
| set_in =
| published =
| publisher = Cambridge University Press
| publisher2 =
| pub_date = 1902
| english_pub_date =
| media_type =
| pages =
| awards =
| isbn =
| isbn_note =
| oclc =
| dewey =
| congress =
| preceded_by =
| followed_by =
| native_wikisource =
| wikisource =
| notes =
| exclude_cover =
| website =
}}
File:A Course of Modern Analysis - 3rd edition - 1920.jpg
A Course of Modern Analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions (colloquially known as Whittaker and Watson) is a landmark textbook on mathematical analysis written by Edmund T. Whittaker and George N. Watson, first published by Cambridge University Press in 1915. The first edition was Whittaker's alone, but later editions were co-authored with Watson.
History
Its first, second, third, and the fourth edition were published in 1902, 1915, 1920, and 1927, respectively. Since then, it has continuously been reprinted and is still in print today. A revised, expanded and digitally reset fifth edition, edited by Victor H. Moll, was published in 2021.
The book is notable for being the standard reference and textbook for a generation of Cambridge mathematicians including Littlewood and Godfrey H. Hardy. Mary L. Cartwright studied it as preparation for her final honours on the advice of fellow student Vernon C. Morton, later Professor of Mathematics at Aberystwyth University. But its reach was much further than just the Cambridge school; André Weil in his obituary of the French mathematician Jean Delsarte noted that Delsarte always had a copy on his desk. In 1941, the book was included among a "selected list" of mathematical analysis books for use in universities in an article for that purpose published by American Mathematical Monthly.
Notable features
Some idiosyncratic but interesting problems from an older era of the Cambridge Mathematical Tripos are in the exercises.
The book was one of the earliest to use decimal numbering for its sections, an innovation the authors attribute to Giuseppe Peano.
Contents
Below are the contents of the fourth edition:
;Part I. The Process of Analysis
{{ordered list|type=upper-roman
| Complex Numbers
| The Theory of Convergence
| Continuous Functions and Uniform Convergence
| The Theory of Riemann Integration
| The fundamental properties of Analytic Functions; Taylor's, Laurent's, and Liouville's Theorems
| The Theory of Residues; application to the evaluation of Definite Integrals
| The expansion of functions in Infinite Series
| Asymptotic Expansions and Summable Series
| Fourier Series and Trigonometrical Series
| Linear Differential Equations
| Integral Equations
}}
;Part II. The Transcendental Functions
{{ordered list|type=upper-roman|start=12
| The Gamma Function
| The Zeta Function of Riemann
| The Hypergeometric Function
| Legendre Functions
| The Confluent Hypergeometric Function
| Bessel Functions
| The Equations of Mathematical Physics
| Mathieu Functions
| Elliptic Functions. General theorems and the Weierstrassian Functions
| The Theta Functions
| The Jacobian Elliptic Functions
| Ellipsoidal Harmonics and Lamé's Equation
}}
Reception
=Reviews of the first edition=
George B. Mathews, in a 1903 review article published in The Mathematical Gazette opens by saying the book is "sure of a favorable reception" because of its "attractive account of some of the most valuable and interesting results of recent analysis". He notes that Part I deals mainly with infinite series, focusing on power series and Fourier expansions while including the "elements of" complex integration and the theory of residues. Part II, in contrast, has chapters on the gamma function, Legendre functions, the hypergeometric series, Bessel functions, elliptic functions, and mathematical physics.
Arthur S. Hathaway, in another 1903 review published in the Journal of the American Chemical Society, notes that the book centers around complex analysis, but that topics such as infinite series are "considered in all their phases" along with "all those important series and functions" developed by mathematicians such as Joseph Fourier, Friedrich Bessel, Joseph-Louis Lagrange, Adrien-Marie Legendre, Pierre-Simon Laplace, Carl Friedrich Gauss, Niels Henrik Abel, and others in their respective studies of "practice problems". He goes on to say it "is a useful book for those who wish to make use of the most advanced developments of mathematical analysis in theoretical investigations of physical and chemical questions."
In a third review of the first edition, Maxime Bôcher, in a 1904 review published in the Bulletin of the American Mathematical Society notes that while the book falls short of the "rigor" of French, German, and Italian writers, it is a "gratifying sign of progress to find in an English book such an attempt at rigorous treatment as is here made". He notes that important parts of the book were otherwise non-existent in the English language.
See also
References
{{reflist|refs=
{{cite book |title=A Course Of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions |author-last=Whittaker |author-first=Edmund Taylor |author-link=Edmund Taylor Whittaker |date=1902 |publisher=at the University Press |publication-place=Cambridge, UK |edition=1st |oclc=1072208628 |url=https://books.google.com/books?id=_hoPAAAAIAAJ}} (xvi+378 pages)
{{cite book |title=A Course Of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions |author-last1=Whittaker |author-first1=Edmund Taylor |author-link1=Edmund Taylor Whittaker |author-last2=Watson |author-first2=George Neville |author-link2=George Neville Watson |date=1915 |publisher=at the University Press |publication-place=Cambridge, UK |edition=2nd |oclc=474155529}} (viii+560 pages)
{{cite book |title=A Course Of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions |author-last1=Whittaker |author-first1=Edmund Taylor |author-link1=Edmund Taylor Whittaker |author-last2=Watson |author-first2=George Neville |author-link2=George Neville Watson |date=1920 |edition=3rd |publisher=at the University Press |publication-place=Cambridge, UK |oclc=1170617940}}
{{cite book |title=A Course Of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions |author-last1=Whittaker |author-first1=Edmund Taylor |author-link1=Edmund Taylor Whittaker |author-last2=Watson |author-first2=George Neville |author-link2=George Neville Watson |date=1927-01-02 |edition=4th |publisher=at the University Press |publication-place=Cambridge, UK}} (vi+608 pages) (reprinted: 1935, 1940, 1946, 1950, 1952, 1958, 1962, 1963, 1992)
{{cite book |title=A Course of Modern Analysis |author-last1=Whittaker |author-first1=Edmund Taylor |author-link1=Edmund Taylor Whittaker |author-last2=Watson |author-first2=George Neville |author-link2=George Neville Watson |date=1996 |orig-date=1927 |publisher=Cambridge University Press |publication-place=Cambridge, UK |series=Cambridge Mathematical Library |doi=10.1017/cbo9780511608759 |edition=4th reissued |isbn=978-0-521-58807-2 |id={{ISBN|0-521-58807-3}} |oclc=802476524 |url=https://books.google.com/books?id=ULVdGZmi9VcC}} (reprinted: 1999, 2000, 2002, 2010) [http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521588072]
{{cite book |title=A Course of Modern Analysis |author-last1=Whittaker |author-first1=Edmund Taylor |author-link1=Edmund Taylor Whittaker |author-last2=Watson |author-first2=George Neville |author-link2=George Neville Watson |editor-first=Victor Hugo |editor-last=Moll |editor-link=Victor Hugo Moll |publisher=Cambridge University Press |publication-place=Cambridge, UK |edition=5th revised |date=2021-08-26 |orig-date=2021-08-07 |doi=10.1017/9781009004091 |isbn=978-1-31651893-9 |id={{ISBN|1-31651893-0}} |url=https://www.cambridge.org/core/books/course-of-modern-analysis/B2DDAE32B565419FA452C51FA03F6F3D |access-date=2021-12-26 |url-status=live |archive-url=https://web.archive.org/web/20210810131124/https://www.cambridge.org/core/books/course-of-modern-analysis/B2DDAE32B565419FA452C51FA03F6F3D |archive-date=2021-08-10}} (700 pages)
{{cite web |title=Dame Mary Lucy Cartwright |author-first1=John J. |author-last1=O'Connor |author-link1=John J. O'Connor (mathematician) |author-first2=Edmund Frederick |author-last2=Robertson |author-link2=Edmund Frederick Robertson |date=October 2003 |website=MacTutor |publisher=St. Andrews University |publication-place=St. Andrews, UK |url=http://www-history.mcs.st-and.ac.uk/Biographies/Cartwright.html |access-date=2021-03-21 |url-status=live |archive-url=https://web.archive.org/web/20210321185828/https://mathshistory.st-andrews.ac.uk/Biographies/Cartwright/ |archive-date=2021-03-21}}
{{cite web |title=Jean Frédéric Auguste Delsarte |author-first1=John J. |author-last1=O'Connor |author-link1=John J. O'Connor (mathematician) |author-first2=Edmund Frederick |author-last2=Robertson |author-link2=Edmund Frederick Robertson |date=December 2005 |website=MacTutor |publisher=St. Andrews University |publication-place=St. Andrews, UK |url=http://www-history.mcs.st-and.ac.uk/Biographies/Delsarte.html |access-date=2021-03-21 |url-status=live |archive-url=https://web.archive.org/web/20210321185835/https://mathshistory.st-andrews.ac.uk/Biographies/Delsarte/ |archive-date=2021-03-21}}
{{cite journal |date=1941 |title=A Selected List of Mathematics Books for Colleges |journal=The American Mathematical Monthly |volume=48 |issue=9 |pages=600–609 |doi=10.1080/00029890.1941.11991146 |jstor=2303868 |issn=0002-9890}} (10 pages)
{{cite journal |author-last=Hathaway |author-first=Arthur Stafford |title=A Course in Modern Analysis |author-link=Arthur Stafford Hathaway |date=February 1903 |journal=Journal of the American Chemical Society |type=review |volume=25 |issue=2 |pages=220 |doi=10.1021/ja02004a022 |bibcode=1903JAChS..25..220H |issn=0002-7863 |url=https://zenodo.org/record/1880047}}
{{cite journal |author-last=Mathews |author-first=George Ballard |date=1903 |author-link=George Ballard Mathews |title=Review of A Course of Modern Analysis |journal=The Mathematical Gazette |type=review |volume=2 |issue=39 |pages=290–292 |doi=10.2307/3603560 |jstor=3603560 |s2cid=221486387 |issn=0025-5572 |url=https://zenodo.org/record/1695538}} (3 pages)
{{cite journal |author-last=Bôcher |author-first=Maxime |author-link=Maxime Bôcher |title=Review: A Course of Modern Analysis, by E. T. Whittaker |journal=Bulletin of the American Mathematical Society |type=review |date=1904 |volume=10 |issue=7 |pages=351–354 |doi=10.1090/s0002-9904-1904-01123-4 |doi-access=free}} (4 pages)
}}
Further reading
- {{cite journal |author-last=Jourdain |author-first=Philip E. B. |author-link=Philip Jourdain |date=1916-01-01 |title=(1) A Course of Pure Mathematics. By G. H. Hardy. Cambridge University Press, 1908. Pp. xvi, 428. Cloth, 12s. net. (2) A Course of Pure Mathematics. By G. H. Hardy. Second edition. Cambridge University Press, 1914. Pp. xii, 443. Cloth, 12s. net. (3) A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. By E. T. Whittaker. Cambridge University Press, 1902. Pp. xvi, 378. Cloth, 12s. 6d. net. (4) A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Second edition, completely revised. By E. T. Whittaker and G. N. Watson. Cambridge University Press, 1915. Pp. viii, 560. Cloth, 18s. net. |type=review |department=VI. Critical Notices |journal=Mind |volume=XXV |issue=4 |pages=525–533 |doi=10.1093/mind/XXV.4.525 |jstor=2248860 |issn=0026-4423}} (9 pages)
- {{cite journal |author-last=Neville |author-first=Eric Harold |author-link=Eric Harold Neville |date=1921 |title=Review of A Course of Modern Analysis |journal=The Mathematical Gazette |type=review |volume=10 |issue=152 |page=283 |doi=10.2307/3604927 |jstor=3604927 |issn=0025-5572}} (1 page)
- {{cite journal |author-last=Wrinch |author-first=Dorothy Maud |author-link=Dorothy Maud Wrinch |date=1921 |title=Review of A Course of Modern Analysis. Third Edition |type=review |journal=Science Progress in the Twentieth Century (1919-1933) |publisher=Sage Publications, Inc. |volume=15 |issue=60 |page=658 |jstor=43769035 |issn=2059-4941}} (1 page)
- {{cite journal |date=1928 |title=Review of A Course of Modern Analysis |journal=The Mathematical Gazette |type=review |volume=14 |issue=196 |page=245 |doi=10.2307/3606904 |jstor=3606904 |s2cid=3980161 |issn=0025-5572}} (1 page)
- {{cite journal |date=1921 |title=Review of A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions |type=review |journal=The American Mathematical Monthly |volume=28 |issue=4 |pages=176 |doi=10.2307/2972291 |jstor=2972291 |hdl=2027/coo1.ark:/13960/t17m0tq6p |issn=0002-9890 |url=https://archive.org/details/courseofmodernan00whit |hdl-access=free}}
- {{cite journal |author=Φ |date=1916 |title=Review of A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Second edition, completely revised |type=review |journal=The Monist |volume=26 |issue=4 |pages=639–640 |jstor=27900617 |issn=0026-9662}} (2 pages)
- {{cite journal |date=1916 |title=Review of A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytical Functions, with an Account of the Principal Transcendental Functions. Second Edition |type=review |journal=Science Progress (1916–1919) |publisher=Sage Publications, Inc. |volume=11 |issue=41 |pages=160–161 |jstor=43426733 |issn=2059-495X}} (2 pages)
- {{cite journal |date=1916 |title=Review of A Course of Modern Analysis: An introduction to the General Theory of Infinite Processes and of Analytical Functions; With an Account of the Principal Transcendental Functions |journal=The Mathematical Gazette |type=review |volume=8 |issue=124 |pages=306–307 |doi=10.2307/3604810 |jstor=3604810 |s2cid=40238008 |issn=0025-5572}} (2 pages)
- {{cite journal |author-last=Schubert |author-first=A. |date=1963 |title=E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Fourth Edition. 608 S. Cambridge 1962. Cambridge University Press. Preis brosch. 27/6 net |type=review |journal=ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik |volume=43 |issue=9 |page=435 |doi=10.1002/zamm.19630430916 |bibcode=1963ZaMM...43R.435S |issn=1521-4001}} (1 page)
- {{cite journal |date=February 1963 |title=Modern Analysis. By E. T. Whittaker and G. N. Watson Pp. 608. 27s. 6d. 1962. (Cambridge University Press) |type=review |url=https://www.cambridge.org/core/journals/mathematical-gazette/article/modern-analysis-by-e-t-whittaker-and-g-n-watson-pp-608-27s-6d-1962-cambridge-university-press/3A3516CC435E34DCAC2939920C37F32F |journal=The Mathematical Gazette |volume=47 |issue=359 |page=88 |doi=10.1017/S0025557200049032 |issn=0025-5572}}
- {{cite journal |date=1916-06-08 |title=A Course of Modern Analysis |journal=Nature |type=review |volume=97 |issue=2432 |pages=298–299 |doi=10.1038/097298a0 |bibcode=1916Natur..97..298. |s2cid=3980161 |issn=1476-4687}} (1 page)
- {{cite journal |date=1920-12-23 |title=A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions |journal=Nature |type=review |volume=106 |issue=2669 |page=531 |doi=10.1038/106531c0 |bibcode=1920Natur.106R.531. |issn=1476-4687 |hdl=2027/coo1.ark:/13960/t17m0tq6p |s2cid=40238008 |url=https://archive.org/details/courseofmodernan00whit |hdl-access=free}} (1 page)
- {{cite journal |author-last=M.-T. |author-first=L. M. |date=1928-03-17 |title=A Course of Modern Analysis: an Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions |type=review |journal=Nature |volume=121 |issue=3046 |page=417 |doi=10.1038/121417a0 |bibcode=1928Natur.121..417M |issn=1476-4687 |doi-access=free}} (1 page)
- {{cite journal |author-last=Stuart |author-first=S. N. |date=1981 |title=Table errata: A course of modern analysis [fourth edition, Cambridge Univ. Press, Cambridge, 1927; Jbuch 53, 180] by E. T. Whittaker and G. N. Watson |type=errata |publisher=American Mathematical Society |url=https://www.ams.org/mcom/1981-36-153/S0025-5718-1981-0595076-1/ |journal=Mathematics of Computation |volume=36 |issue=153 |pages=315–320 [319] |doi=10.1090/S0025-5718-1981-0595076-1 |jstor=2007758 |issn=0025-5718 |doi-access=free}} (1 of 6 pages)
{{E. T. Whittaker}}
{{Authority control}}
{{DEFAULTSORT:Course of Modern Analysis, A}}
Category:1902 non-fiction books
Category:Cambridge University Press books
Category:Mathematics textbooks