Abel's binomial theorem
{{short description|Mathematical identity involving sums of binomial coefficients}}
Abel's binomial theorem, named after Niels Henrik Abel, is a mathematical identity involving sums of binomial coefficients. It states the following:
:
Example
=The case ''m'' = 2=
:
\begin{align}
& {} \quad \binom{2}{0}(w+2)^1(z+0)^0+\binom{2}{1}(w+1)^0(z+1)^1+\binom{2}{2}(w+0)^{-1}(z+2)^2 \\
& = (w+2)+2(z+1)+\frac{(z+2)^2}{w} \\
& = \frac{(z+w+2)^2}{w}.
\end{align}
See also
References
- {{mathworld|title=Abel's binomial theorem|urlname=AbelsBinomialTheorem}}
Category:Factorial and binomial topics
{{numtheory-stub}}