Abel–Goncharov interpolation

In mathematics, Abel–Goncharov interpolation determines a polynomial such that various higher derivatives are the same as those of a given function at given points. It was introduced by {{harvs|txt|last=Whittaker|authorlink=John Macnaghten Whittaker|year=1935}} and rediscovered by {{harvs|txt|last=Goncharov|year=1954}}.

References

{{reflist}}

  • {{Citation | last1=Whittaker | first1=J. M. | title=Interpolatory function theory | url=https://books.google.com/books?id=yyPvAAAAMAAJ | publisher=Cambridge University Press | series=Cambridge Tracts in Mathematics and Mathematical Physics, No. 33 | mr=0185330 | year=1935}}
  • {{Citation | last1=Goncharov | first1=V. L. | title=Teoriya interpolirovaniya i približeniya funkcii | publisher=Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow | language=Russian | mr=0067947 | year=1954}}

{{DEFAULTSORT:Abel-Goncharov interpolation}}

Category:Interpolation

{{mathanalysis-stub}}