Absolutely maximally entangled state
{{Short description|Quantum Information Science}}
The absolutely maximally entangled (AME) state is a concept in quantum information science, which has many applications in quantum error-correcting code,{{Cite journal |last1=Goyeneche |first1=Dardo |last2=Alsina |first2=Daniel |last3=Latorre |first3=José I. |last4=Riera |first4=Arnau |last5=Życzkowski |first5=Karol |date=2015-09-15 |title=Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices |url=https://link.aps.org/doi/10.1103/PhysRevA.92.032316 |journal=Physical Review A |volume=92 |issue=3 |pages=032316 |doi=10.1103/PhysRevA.92.032316|arxiv=1506.08857 |bibcode=2015PhRvA..92c2316G |hdl=1721.1/98529 |s2cid=13948915 |hdl-access=free }} discrete AdS/CFT correspondence,{{Cite journal |last1=Pastawski |first1=Fernando |last2=Yoshida |first2=Beni |last3=Harlow |first3=Daniel |last4=Preskill |first4=John |date=2015-06-23 |title=Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence |url=https://doi.org/10.1007/JHEP06(2015)149 |journal=Journal of High Energy Physics |language=en |volume=2015 |issue=6 |pages=149 |doi=10.1007/JHEP06(2015)149 |arxiv=1503.06237 |bibcode=2015JHEP...06..149P |s2cid=256004738 |issn=1029-8479}} AdS/CMT correspondence, and more. It is the multipartite generalization of the bipartite maximally entangled state.
Definition
The bipartite maximally entangled state is the one for which the reduced density operators are maximally mixed, i.e., . Typical examples are Bell states.
A multipartite state of a system is called absolutely maximally entangled if for any bipartition of , the reduced density operator is maximally mixed , where .
Property
The AME state does not always exist; in some given local dimension and number of parties, there is no AME state. There is a list of AME states in low dimensions created by Huber and Wyderka.{{Cite web |last1=Huber |first1=F. |last2=Wyderka |first2=N. |title=Table of AME states |url=https://www.tp.nt.uni-siegen.de/+fhuber/ame.html}}{{Cite journal |last1=Huber |first1=Felix |last2=Eltschka |first2=Christopher |last3=Siewert |first3=Jens |last4=Gühne |first4=Otfried |date=2018-04-27 |title=Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity |url=https://iopscience.iop.org/article/10.1088/1751-8121/aaade5 |journal=Journal of Physics A: Mathematical and Theoretical |volume=51 |issue=17 |pages=175301 |doi=10.1088/1751-8121/aaade5 |issn=1751-8113|arxiv=1708.06298 |bibcode=2018JPhA...51q5301H |s2cid=12071276 }}
The existence of the AME state can be transformed into the existence of the solution for a specific quantum marginal problem.{{Cite journal |last1=Yu |first1=Xiao-Dong |last2=Simnacher |first2=Timo |last3=Wyderka |first3=Nikolai |last4=Nguyen |first4=H. Chau |last5=Gühne |first5=Otfried |date=2021-02-12 |title=A complete hierarchy for the pure state marginal problem in quantum mechanics |journal=Nature Communications |language=en |volume=12 |issue=1 |pages=1012 |doi=10.1038/s41467-020-20799-5 |pmid=33579935 |issn=2041-1723|pmc=7881147 |arxiv=2008.02124 |bibcode=2021NatCo..12.1012Y }}
The AME can also be used to build a kind of quantum error-correcting code called holographic error-correcting code.{{Cite book |title="Holographic code", The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. |chapter=Holographic code |date=2022 |chapter-url=https://errorcorrectionzoo.org/c/holographic}}{{Cite journal |last1=Pastawski |first1=Fernando |last2=Preskill |first2=John |date=2017-05-15 |title=Code Properties from Holographic Geometries |url=https://link.aps.org/doi/10.1103/PhysRevX.7.021022 |journal=Physical Review X |volume=7 |issue=2 |pages=021022 |doi=10.1103/PhysRevX.7.021022|arxiv=1612.00017 |bibcode=2017PhRvX...7b1022P |s2cid=44236798 }}
==References==
{{reflist}}