Affine bundle

{{short description|Type of fiber bundle}}

In mathematics, an affine bundle is a fiber bundle whose typical fiber, fibers, trivialization morphisms and transition functions are affine.{{citation|last1=Kolář|first1=Ivan|last2=Michor|first2=Peter|last3=Slovák|first3=Jan|url=http://www.emis.de/monographs/KSM/kmsbookh.pdf|format=PDF|title=Natural operators in differential geometry|year=1993|publisher=Springer-Verlag|access-date=2013-05-28|archive-url=https://web.archive.org/web/20170330154524/http://www.emis.de/monographs/KSM/kmsbookh.pdf|archive-date=2017-03-30|url-status=dead}}. (page 60)

Formal definition

Let \overline\pi:\overline Y\to X be a vector bundle with a typical fiber a vector space \overline F. An affine bundle modelled on a vector bundle \overline\pi:\overline Y\to X is a fiber bundle \pi:Y\to X whose typical fiber F is an affine space modelled on \overline F so that the following conditions hold:

(i) Every fiber Y_x of Y is an affine space modelled over the corresponding fibers \overline Y_x of a vector bundle \overline Y.

(ii) There is an affine bundle atlas of Y\to X whose local trivializations morphisms and transition functions are affine isomorphisms.

Dealing with affine bundles, one uses only affine bundle coordinates (x^\mu,y^i) possessing affine transition functions

: y'^i= A^i_j(x^\nu)y^j + b^i(x^\nu).

There are the bundle morphisms

: Y\times_X\overline Y\longrightarrow Y,\qquad (y^i, \overline y^i)\longmapsto y^i +\overline y^i,

:Y\times_X Y\longrightarrow \overline Y,\qquad (y^i, y'^i)\longmapsto y^i - y'^i,

where (\overline y^i) are linear bundle coordinates on a vector bundle \overline Y, possessing linear transition functions \overline y'^i= A^i_j(x^\nu)\overline y^j .

Properties

An affine bundle has a global section, but in contrast with vector bundles, there is no canonical global section of an affine bundle. Let \pi:Y\to X be an affine bundle modelled on a vector bundle \overline\pi:\overline Y\to X. Every global section s of an affine bundle Y\to X yields the bundle morphisms

: Y\ni y\to y-s(\pi(y))\in \overline Y, \qquad

\overline Y\ni \overline y\to s(\pi(y))+\overline y\in Y.

In particular, every vector bundle Y has a natural structure of an affine bundle due to these morphisms where s=0 is the canonical zero-valued section of Y. For instance, the tangent bundle TX of a manifold X naturally is an affine bundle.

An affine bundle Y\to X is a fiber bundle with a general affine structure group GA(m,\mathbb R) of affine transformations of its typical fiber V of dimension m. This structure group always is reducible to a general linear group GL(m, \mathbb R) , i.e., an affine bundle admits an atlas with linear transition functions.

By a morphism of affine bundles is meant a bundle morphism \Phi:Y\to Y' whose restriction to each fiber of Y is an affine map. Every affine bundle morphism \Phi:Y\to Y' of an affine bundle Y modelled on a vector bundle \overline Y to an affine bundle Y' modelled on a vector bundle \overline Y' yields a unique linear bundle morphism

: \overline \Phi: \overline Y\to \overline Y', \qquad \overline y'^i=

\frac{\partial\Phi^i}{\partial y^j}\overline y^j,

called the linear derivative of \Phi.

See also

Notes

{{Reflist}}

References

  • S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vols. 1 & 2, Wiley-Interscience, 1996, {{ISBN|0-471-15733-3}}.
  • {{citation|last1=Kolář|first1=Ivan|last2=Michor|first2=Peter|last3=Slovák|first3=Jan|url=http://www.emis.de/monographs/KSM/kmsbookh.pdf|format=PDF|title=Natural operators in differential geometry|year=1993|publisher=Springer-Verlag|access-date=2013-05-28|archive-url=https://web.archive.org/web/20170330154524/http://www.emis.de/monographs/KSM/kmsbookh.pdf|archive-date=2017-03-30|url-status=dead}}
  • Sardanashvily, G., Advanced Differential Geometry for Theoreticians. Fiber bundles, jet manifolds and Lagrangian theory, Lambert Academic Publishing, 2013, {{ISBN|978-3-659-37815-7}}; {{arXiv|0908.1886}}.
  • {{citation|last1 = Saunders|first1 = D.J.|title = The geometry of jet bundles|year = 1989|publisher = Cambridge University Press|isbn = 0-521-36948-7|url-access = registration|url = https://archive.org/details/geometryofjetbun0000saun}}

Category:Differential geometry

Category:Fiber bundles