Affine q-Krawtchouk polynomials

In mathematics, the affine q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Carlitz and Hodges. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions by Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p. 501, Springer, 2010

: K^{\text{aff}}_n (q^{-x};p;N;q) = {}_3\phi_2\left( \begin{matrix}

q^{-n},0,q^{-x}\\

pq,q^{-N}\end{matrix};q,q\right), \qquad n=0,1,2,\ldots, N.

Relation to other polynomials

affine q-Krawtchouk polynomials → little q-Laguerre polynomials

: \lim_{a \to 1}=K_n^\text{aff}(q^{x-N};p,N\mid q)=p_n(q^x;p,q).

References

{{Reflist}}

  • {{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
  • {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
  • {{dlmf|id=18|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
  • {{Citation | last1=Stanton | first1=Dennis | title=Three addition theorems for some q-Krawtchouk polynomials | doi=10.1007/BF01447435 | mr=608153 | year=1981 | journal=Geometriae Dedicata | issn=0046-5755 | volume=10 | issue=1 | pages=403–425| s2cid=119838893 }}

Category:Orthogonal polynomials

Category:Q-analogs

Category:Special hypergeometric functions