Affine root system
In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple p-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by {{harvtxt|Macdonald|1972}} and {{harvtxt|Bruhat|Tits|1972}} (except that both these papers accidentally omitted the Dynkin diagram {{Dynkin|node|4b|nodeg|4a|node}}).
Definition
Let E be an affine space and V the vector space of its translations.
Recall that V acts faithfully and transitively on E.
In particular, if , then it is well defined an element in V denoted as which is the only element w such that .
Now suppose we have a scalar product on V.
This defines a metric on E as .
Consider the vector space F of affine-linear functions .
Having fixed a , every element in F can be written as with a linear function on V that doesn't depend on the choice of .
Now the dual of V can be identified with V thanks to the chosen scalar product and we can define a product on F as .
Set and for any and respectively.
The identification let us define a reflection over E in the following way:
:
By transposition acts also on F as
:
An affine root system is a subset such that:
{{ordered list|start=1
|S spans F and its elements are non-constant.
| for every .
| for every .
}}
The elements of S are called affine roots.
Denote with the group generated by the with .
We also ask
{{ordered list|start=4
| as a discrete group acts properly on E.}}
This means that for any two compacts the elements of such that are a finite number.
Classification
The affine roots systems A1 = B1 = B{{su|b=1|p=∨}} = C1 = C{{su|b=1|p=∨}} are the same, as are the pairs B2 = C2, B{{su|b=2|p=∨}} = C{{su|b=2|p=∨}}, and A3 = D3
The number of orbits given in the table is the number of orbits of simple roots under the Weyl group.
In the Dynkin diagrams, the non-reduced simple roots α (with 2α a root) are colored green. The first Dynkin diagram in a series sometimes does not follow the same rule as the others.
class="wikitable skin-invert-image" | ||
Affine root system | Number of orbits | Dynkin diagram |
---|---|---|
An (n ≥ 1) | 2 if n=1, 1 if n≥2 | {{Dynkin|node|4ab|node}}, {{Dynkin2|branch|loop2}}, {{Dynkin2|loop1|nodes|loop2}}, {{Dynkin2|branch|3s|nodes|loop2}}, ... |
Bn (n ≥ 3) | 2 | {{Dynkin|branch1|node|4b|node}}, {{Dynkin|branch1|node|3|node|4b|node}},{{Dynkin|branch1|node|3|node|3|node|4b|node}}, ... |
B{{su|b=n|p=∨}} (n ≥ 3) | 2 | {{Dynkin|branch1|node|4a|node}}, {{Dynkin|branch1|node|3|node|4a|node}},{{Dynkin|branch1|node|3|node|3|node|4a|node}}, ... |
Cn (n ≥ 2) | 3 | {{Dynkin|node|4b|node|4a|node}}, {{Dynkin|node|4b|node|3|node|4a|node}}, {{Dynkin|node|4b|node|3|node|3|node|4a|node}}, ... |
C{{su|b=n|p=∨}} (n ≥ 2) | 3 | {{Dynkin|node|4a|node|4b|node}}, {{Dynkin|node|4a|node|3|node|4b|node}}, {{Dynkin|node|4a|node|3|node|3|node|4b|node}}, ... |
BCn (n ≥ 1) | 2 if n=1, 3 if n ≥ 2 | {{Dynkin|node|4c|node}}, {{Dynkin|node|4a|node|4a|node}}, {{Dynkin|node|4a|node|3|node|4a|node}}, {{Dynkin|node|4a|node|3|node|3|node|4a|node}}, ... |
Dn (n ≥ 4) | 1 | {{Dynkin|branch1|node|branch2}}, {{Dynkin|branch1|node|3|node|branch2}}, {{Dynkin|branch1|node|3|node|3|node|branch2}}, ... |
E6 | 1 | {{Dynkin|node|3|node|3|node|branch2|3s|nodes}} |
E7 | 1 | {{Dynkin2|node|3|node|3|node|3|branch|3|node|3|node|3|node}} |
E8 | 1 | {{Dynkin2|node|3|node|3|branch|3|node|3|node|3|node|3|node|3|node}} |
F4 | 2 | {{Dynkin|node|3|node|4a|node|3|node|3|node}} |
F{{su|b=4|p=∨}} | 2 | {{Dynkin|node|3|node|4b|node|3|node|3|node}} |
G2 | 2 | {{Dynkin|node|6a|node|3|node}} |
G{{su|b=2|p=∨}} | 2 | {{Dynkin|node|6b|node|3|node}} |
(BCn, Cn) (n ≥ 1) | 3 if n=1, 4 if n≥2 | {{Dynkin|nodeg|4c|node}}, {{Dynkin|nodeg|4a|node|4a|node}}, {{Dynkin|nodeg|4a|node|3|node|4a|node}}, {{Dynkin|nodeg|4a|node|3|node|3|node|4a|node}}, ... |
(C{{su|b=n|p=∨}}, BCn) (n ≥ 1) | 3 if n=1, 4 if n≥2 | {{Dynkin|nodeg|4ab|node}}, {{Dynkin|nodeg|4a|node|4b|node}}, {{Dynkin|nodeg|4a|node|3|node|4b|node}}, {{Dynkin|nodeg|4a|node|3|node|3|node|4b|node}}, ... |
(Bn, B{{su|b=n|p=∨}}) (n ≥ 2) | 4 if n=2, 3 if n≥3 | {{Dynkin|node|4b|nodeg|4a|node}}, {{Dynkin|branch1|node|4b|nodeg}}, {{Dynkin|branch1|node|3|node|4b|nodeg}},{{Dynkin|branch1|node|3|node|3|node|4b|nodeg}}, ... |
(C{{su|b=n|p=∨}}, Cn) (n ≥ 1) | 4 if n=1, 5 if n≥2 | {{Dynkin|nodeg|4ab|nodeg}}, {{Dynkin|nodeg|4a|node|4b|nodeg}}, {{Dynkin|nodeg|4a|node|3|node|4b|nodeg}}, {{Dynkin|nodeg|4a|node|3|node|3|node|4b|nodeg}}, ... |
=Irreducible affine root systems by rank=
:Rank 1: A1, BC1, (BC1, C1), (C{{su|b=1|p=∨}}, BC1), (C{{su|b=1|p=∨}}, C1).
:Rank 2: A2, C2, C{{su|b=2|p=∨}}, BC2, (BC2, C2), (C{{su|b=2|p=∨}}, BC2), (B2, B{{su|b=2|p=∨}}), (C{{su|b=2|p=∨}}, C2), G2, G{{su|b=2|p=∨}}.
:Rank 3: A3, B3, B{{su|b=3|p=∨}}, C3, C{{su|b=3|p=∨}}, BC3, (BC3, C3), (C{{su|b=3|p=∨}}, BC3), (B3, B{{su|b=3|p=∨}}), (C{{su|b=3|p=∨}}, C3).
:Rank 4: A4, B4, B{{su|b=4|p=∨}}, C4, C{{su|b=4|p=∨}}, BC4, (BC4, C4), (C{{su|b=4|p=∨}}, BC4), (B4, B{{su|b=4|p=∨}}), (C{{su|b=4|p=∨}}, C4), D4, F4, F{{su|b=4|p=∨}}.
:Rank 5: A5, B5, B{{su|b=5|p=∨}}, C5, C{{su|b=5|p=∨}}, BC5, (BC5, C5), (C{{su|b=5|p=∨}}, BC5), (B5, B{{su|b=5|p=∨}}), (C{{su|b=5|p=∨}}, C5), D5.
:Rank 6: A6, B6, B{{su|b=6|p=∨}}, C6, C{{su|b=6|p=∨}}, BC6, (BC6, C6), (C{{su|b=6|p=∨}}, BC6), (B6, B{{su|b=6|p=∨}}), (C{{su|b=6|p=∨}}, C6), D6, E6,
:Rank 7: A7, B7, B{{su|b=7|p=∨}}, C7, C{{su|b=7|p=∨}}, BC7, (BC7, C7), (C{{su|b=7|p=∨}}, BC7), (B7, B{{su|b=7|p=∨}}), (C{{su|b=7|p=∨}}, C7), D7, E7,
:Rank 8: A8, B8, B{{su|b=8|p=∨}}, C8, C{{su|b=8|p=∨}}, BC8, (BC8, C8), (C{{su|b=8|p=∨}}, BC8), (B8, B{{su|b=8|p=∨}}), (C{{su|b=8|p=∨}}, C8), D8, E8,
:Rank n (n>8): An, Bn, B{{su|b=n|p=∨}}, Cn, C{{su|b=n|p=∨}}, BCn, (BCn, Cn), (C{{su|b=n|p=∨}}, BCn), (Bn, B{{su|b=n|p=∨}}), (C{{su|b=n|p=∨}}, Cn), Dn.
Applications
- {{harvtxt|Macdonald|1972}} showed that the affine root systems index Macdonald identities
- {{harvtxt|Bruhat|Tits|1972}} used affine root systems to study p-adic algebraic groups.
- Reduced affine root systems classify affine Kac–Moody algebras, while the non-reduced affine root systems correspond to affine Lie superalgebras.
- {{harvtxt|Macdonald|2003}} showed that affine roots systems index families of Macdonald polynomials.
References
- {{Citation | last1=Bruhat | first1=F. | last2=Tits | first2=Jacques | title=Groupes réductifs sur un corps local | url=http://www.numdam.org/item?id=PMIHES_1972__41__5_0 | mr=0327923 | year=1972 | journal=Publications Mathématiques de l'IHÉS | issn=1618-1913 | volume=41 | pages=5–251 | doi=10.1007/bf02715544| s2cid=125864274 | url-access=subscription }}
- {{Citation | last1=Macdonald | first1=I. G. | author1-link=Ian G. Macdonald | title=Affine root systems and Dedekind's η-function | doi=10.1007/BF01418931 | mr=0357528 | year=1972 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=15 | issue=2 | pages=91–143| bibcode=1971InMat..15...91M | s2cid=122115111 }}
- {{Citation | last=Macdonald | first=I. G. | title = Affine Hecke algebras and orthogonal polynomials | location=Cambridge | series=Cambridge Tracts in Mathematics | volume=157 | publisher=Cambridge University Press | year=2003 | pages=x+175 | isbn=978-0-521-82472-9| mr=1976581}}