Affine root system

Image:G2 affine chamber.svg

In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple p-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by {{harvtxt|Macdonald|1972}} and {{harvtxt|Bruhat|Tits|1972}} (except that both these papers accidentally omitted the Dynkin diagram {{Dynkin|node|4b|nodeg|4a|node}}).

Definition

Let E be an affine space and V the vector space of its translations.

Recall that V acts faithfully and transitively on E.

In particular, if u,v \in E, then it is well defined an element in V denoted as u-v which is the only element w such that v+w=u.

Now suppose we have a scalar product (\cdot,\cdot) on V.

This defines a metric on E as d(u,v)=\vert(u-v,u-v)\vert.

Consider the vector space F of affine-linear functions f\colon E\longrightarrow \mathbb{R}.

Having fixed a x_0\in E, every element in F can be written as f(x)=Df(x-x_0)+f(x_0) with Df a linear function on V that doesn't depend on the choice of x_0.

Now the dual of V can be identified with V thanks to the chosen scalar product and we can define a product on F as (f,g)=(Df,Dg).

Set f^\vee =\frac{2f}{(f,f)} and v^\vee =\frac{2v}{(v,v)} for any f\in F and v\in V respectively.

The identification let us define a reflection w_f over E in the following way:

: w_f(x)=x-f^\vee(x)Df

By transposition w_f acts also on F as

:w_f(g)=g-(f^\vee,g)f

An affine root system is a subset S\in F such that:

{{ordered list|start=1

|S spans F and its elements are non-constant.

|w_a(S)=S for every a\in S.

|(a,b^\vee)\in\mathbb{Z} for every a,b\in S.

}}

The elements of S are called affine roots.

Denote with w(S) the group generated by the w_a with a\in S.

We also ask

{{ordered list|start=4

|w(S) as a discrete group acts properly on E.}}

This means that for any two compacts K,H\subseteq E the elements of w(S) such that w(K)\cap H\neq \varnothing are a finite number.

Classification

The affine roots systems A1 = B1 = B{{su|b=1|p=∨}} = C1 = C{{su|b=1|p=∨}} are the same, as are the pairs B2 = C2, B{{su|b=2|p=∨}} = C{{su|b=2|p=∨}}, and A3 = D3

The number of orbits given in the table is the number of orbits of simple roots under the Weyl group.

In the Dynkin diagrams, the non-reduced simple roots α (with 2α a root) are colored green. The first Dynkin diagram in a series sometimes does not follow the same rule as the others.

class="wikitable skin-invert-image"
Affine root systemNumber of orbitsDynkin diagram
An (n ≥ 1)2 if n=1, 1 if n≥2{{Dynkin|node|4ab|node}}, {{Dynkin2|branch|loop2}}, {{Dynkin2|loop1|nodes|loop2}}, {{Dynkin2|branch|3s|nodes|loop2}}, ...
Bn (n ≥ 3)2{{Dynkin|branch1|node|4b|node}}, {{Dynkin|branch1|node|3|node|4b|node}},{{Dynkin|branch1|node|3|node|3|node|4b|node}}, ...
B{{su|b=n|p=∨}} (n ≥ 3)2{{Dynkin|branch1|node|4a|node}}, {{Dynkin|branch1|node|3|node|4a|node}},{{Dynkin|branch1|node|3|node|3|node|4a|node}}, ...
Cn (n ≥ 2)3{{Dynkin|node|4b|node|4a|node}}, {{Dynkin|node|4b|node|3|node|4a|node}}, {{Dynkin|node|4b|node|3|node|3|node|4a|node}}, ...
C{{su|b=n|p=∨}} (n ≥ 2)3{{Dynkin|node|4a|node|4b|node}}, {{Dynkin|node|4a|node|3|node|4b|node}}, {{Dynkin|node|4a|node|3|node|3|node|4b|node}}, ...
BCn (n ≥ 1)2 if n=1, 3 if n ≥ 2{{Dynkin|node|4c|node}}, {{Dynkin|node|4a|node|4a|node}}, {{Dynkin|node|4a|node|3|node|4a|node}}, {{Dynkin|node|4a|node|3|node|3|node|4a|node}}, ...
Dn (n ≥ 4)1{{Dynkin|branch1|node|branch2}}, {{Dynkin|branch1|node|3|node|branch2}}, {{Dynkin|branch1|node|3|node|3|node|branch2}}, ...
E61{{Dynkin|node|3|node|3|node|branch2|3s|nodes}}
E71{{Dynkin2|node|3|node|3|node|3|branch|3|node|3|node|3|node}}
E81{{Dynkin2|node|3|node|3|branch|3|node|3|node|3|node|3|node|3|node}}
F42{{Dynkin|node|3|node|4a|node|3|node|3|node}}
F{{su|b=4|p=∨}}2{{Dynkin|node|3|node|4b|node|3|node|3|node}}
G22{{Dynkin|node|6a|node|3|node}}
G{{su|b=2|p=∨}}2{{Dynkin|node|6b|node|3|node}}
(BCn, Cn) (n ≥ 1)3 if n=1, 4 if n≥2{{Dynkin|nodeg|4c|node}}, {{Dynkin|nodeg|4a|node|4a|node}}, {{Dynkin|nodeg|4a|node|3|node|4a|node}}, {{Dynkin|nodeg|4a|node|3|node|3|node|4a|node}}, ...
(C{{su|b=n|p=∨}}, BCn) (n ≥ 1)3 if n=1, 4 if n≥2{{Dynkin|nodeg|4ab|node}}, {{Dynkin|nodeg|4a|node|4b|node}}, {{Dynkin|nodeg|4a|node|3|node|4b|node}}, {{Dynkin|nodeg|4a|node|3|node|3|node|4b|node}}, ...
(Bn, B{{su|b=n|p=∨}}) (n ≥ 2)4 if n=2, 3 if n≥3{{Dynkin|node|4b|nodeg|4a|node}}, {{Dynkin|branch1|node|4b|nodeg}}, {{Dynkin|branch1|node|3|node|4b|nodeg}},{{Dynkin|branch1|node|3|node|3|node|4b|nodeg}}, ...
(C{{su|b=n|p=∨}}, Cn) (n ≥ 1)4 if n=1, 5 if n≥2{{Dynkin|nodeg|4ab|nodeg}}, {{Dynkin|nodeg|4a|node|4b|nodeg}}, {{Dynkin|nodeg|4a|node|3|node|4b|nodeg}}, {{Dynkin|nodeg|4a|node|3|node|3|node|4b|nodeg}}, ...

=Irreducible affine root systems by rank=

:Rank 1: A1, BC1, (BC1, C1), (C{{su|b=1|p=∨}}, BC1), (C{{su|b=1|p=∨}}, C1).

:Rank 2: A2, C2, C{{su|b=2|p=∨}}, BC2, (BC2, C2), (C{{su|b=2|p=∨}}, BC2), (B2, B{{su|b=2|p=∨}}), (C{{su|b=2|p=∨}}, C2), G2, G{{su|b=2|p=∨}}.

:Rank 3: A3, B3, B{{su|b=3|p=∨}}, C3, C{{su|b=3|p=∨}}, BC3, (BC3, C3), (C{{su|b=3|p=∨}}, BC3), (B3, B{{su|b=3|p=∨}}), (C{{su|b=3|p=∨}}, C3).

:Rank 4: A4, B4, B{{su|b=4|p=∨}}, C4, C{{su|b=4|p=∨}}, BC4, (BC4, C4), (C{{su|b=4|p=∨}}, BC4), (B4, B{{su|b=4|p=∨}}), (C{{su|b=4|p=∨}}, C4), D4, F4, F{{su|b=4|p=∨}}.

:Rank 5: A5, B5, B{{su|b=5|p=∨}}, C5, C{{su|b=5|p=∨}}, BC5, (BC5, C5), (C{{su|b=5|p=∨}}, BC5), (B5, B{{su|b=5|p=∨}}), (C{{su|b=5|p=∨}}, C5), D5.

:Rank 6: A6, B6, B{{su|b=6|p=∨}}, C6, C{{su|b=6|p=∨}}, BC6, (BC6, C6), (C{{su|b=6|p=∨}}, BC6), (B6, B{{su|b=6|p=∨}}), (C{{su|b=6|p=∨}}, C6), D6, E6,

:Rank 7: A7, B7, B{{su|b=7|p=∨}}, C7, C{{su|b=7|p=∨}}, BC7, (BC7, C7), (C{{su|b=7|p=∨}}, BC7), (B7, B{{su|b=7|p=∨}}), (C{{su|b=7|p=∨}}, C7), D7, E7,

:Rank 8: A8, B8, B{{su|b=8|p=∨}}, C8, C{{su|b=8|p=∨}}, BC8, (BC8, C8), (C{{su|b=8|p=∨}}, BC8), (B8, B{{su|b=8|p=∨}}), (C{{su|b=8|p=∨}}, C8), D8, E8,

:Rank n (n>8): An, Bn, B{{su|b=n|p=∨}}, Cn, C{{su|b=n|p=∨}}, BCn, (BCn, Cn), (C{{su|b=n|p=∨}}, BCn), (Bn, B{{su|b=n|p=∨}}), (C{{su|b=n|p=∨}}, Cn), Dn.

Applications

  • {{harvtxt|Macdonald|1972}} showed that the affine root systems index Macdonald identities
  • {{harvtxt|Bruhat|Tits|1972}} used affine root systems to study p-adic algebraic groups.
  • Reduced affine root systems classify affine Kac–Moody algebras, while the non-reduced affine root systems correspond to affine Lie superalgebras.
  • {{harvtxt|Macdonald|2003}} showed that affine roots systems index families of Macdonald polynomials.

References

  • {{Citation | last1=Bruhat | first1=F. | last2=Tits | first2=Jacques | title=Groupes réductifs sur un corps local | url=http://www.numdam.org/item?id=PMIHES_1972__41__5_0 | mr=0327923 | year=1972 | journal=Publications Mathématiques de l'IHÉS | issn=1618-1913 | volume=41 | pages=5–251 | doi=10.1007/bf02715544| s2cid=125864274 | url-access=subscription }}
  • {{Citation | last1=Macdonald | first1=I. G. | author1-link=Ian G. Macdonald | title=Affine root systems and Dedekind's η-function | doi=10.1007/BF01418931 | mr=0357528 | year=1972 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=15 | issue=2 | pages=91–143| bibcode=1971InMat..15...91M | s2cid=122115111 }}
  • {{Citation | last=Macdonald | first=I. G. | title = Affine Hecke algebras and orthogonal polynomials | location=Cambridge | series=Cambridge Tracts in Mathematics | volume=157 | publisher=Cambridge University Press | year=2003 | pages=x+175 | isbn=978-0-521-82472-9| mr=1976581}}

Category:Discrete groups

Category:Lie algebras

Category:Orthogonal polynomials