Alice Vrielink

{{short description|Biologist}}

{{Use dmy dates|date=April 2022}}

{{Infobox scientist

| name = Alice Vrielink

| image =

| image_size =

| image_upright =

| alt =

| caption =

| birth_name =

| birth_date =

| birth_place =

| death_date =

| workplaces =

| education =

| alma_mater = University of London

| thesis_title = The crystal structure determination of cholesterol oxidase

| thesis_url = https://www.worldcat.org/oclc/{{{1063590654}}}

| thesis_year = 1989

| doctoral_advisor = David Mervyn Blow{{Cite web|last=Vrielink|first=Alice|date=2014-07-03|title=David Blow (1931-2004) - A Remberance|url=http://www.amercrystalassn.org/documents/newsletterarchive/2004Winter.pdf|url-status=live|access-date=2021-10-14|website=American Crystallographic Association|archive-url=https://web.archive.org/web/20140703002900/http://www.amercrystalassn.org/documents/newsletterarchive/2004Winter.pdf|archive-date=2014-07-03}}

| academic_advisors =

| doctoral_students =

| awards =

| website =

}}

Alice Vrielink is a structural biologist and Professor of Structural Biology in the School of Molecular Sciences at the University of Western Australia. She is known for her work determining the structures of macromolecules such as enzymes and nucleic acids.

Education

Vrielink earned a Bachelor of Science in Chemistry and Masters of Science in Physical Chemistry at the University of Calgary in Canada.{{cite web|title=Researcher Profile: Professor Alice Vrielink|url=http://research-repository.uwa.edu.au/en/persons/alice-vrielink(b6a6bacb-3977-46a5-aa75-acc666726ca3).html|website=UWA Research Repository}} For her master's research she worked on ligands of angiotensin, a hormone involved in regulating blood pressure.{{Cite thesis|title=Structural and conformational energy studies of ligands of angiotensin converting enzyme and thermolysin|url=https://www.worldcat.org/oclc/16710356|publisher=National Library of Canada|date=1986|place=Ottawa|language=English|first=Alice|last=Vrielink|oclc = 16710356}} She received a PhD in 1989 from the University of London where she worked on the structure of cholesterol oxidase.{{Cite book|last1=Vrielink|first1=Alice|url=http://hdl.handle.net/10044/1/47699|title=The crystal structure determination of cholesterol oxidase.|last2=University of London|date=1989|hdl=10044/1/47699|language=English|oclc=1063590654}} She also has a Diploma in Crystallography from the Imperial College of Science and Technology.

Career

Vrielink was an Assistant and Associate Professor at McGill University in Canada from 1994 to 2001. From 2000 until 2007 she served as a Research Professor at the University of California, Santa Cruz and then joined the faculty at University of Western Australia as Professor of Structural Biology in 2007.

Vrielink was a member of the 2014 National Committee on Crystallography[https://www.science.org.au/academy-newsletter/australian-academy-science-newsletter-98/national-committees "Triennial Congress and General Assembly"]. Australian Academy of Science newsletter. She is a past president of the Society of Crystallographers of Australia and New Zealand (SCANZ).{{Cite news|url=http://scanz.iucr.org/__data/assets/pdf_file/0008/126269/SCANZ_news_Sep_2016.pdf|title=From the President|last=Vrielink|first=Alice|date=2016|work=Scanz Newsletter|access-date=7 February 2018}}

Research

Vrielink conducts research in protein biochemistry and crystallography with a special focus on understanding the structural determinants governing enzyme chemistry.Ducy, Liam. [http://www.watoday.com.au/wa-news/uwa-celebrates-australian-link-in-scientific-breakthrough-20140819-105puz.html "UWA celebrates Australian link in scientific breakthrough"]. WAToday, August 20, 2014. Vrielink's early research centered on the three-dimensional structure of the enzyme cholesterol oxidase first in Brevibacterium{{Cite journal|last1=Li|first1=Jiayao|last2=Vrielink|first2=Alice|last3=Brick|first3=Peter|last4=Blow|first4=David M.|date=1993-01-26|title=Crystal structure of cholesterol oxidase complexed with a steroid substrate: Implications for flavin adenine dinucleotide dependent alcohol oxidases|url=https://doi.org/10.1021/bi00094a006|journal=Biochemistry|volume=32|issue=43|pages=11507–11515|doi=10.1021/bi00094a006|pmid=8218217|issn=0006-2960|url-access=subscription}}{{Cite journal|last1=Vrielink|first1=Alice|last2=Lloyd|first2=Lesley F|last3=Blow|first3=David M|date=1991-06-05|title=Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 Å resolution|url=https://dx.doi.org/10.1016/0022-2836%2891%2990192-9|journal=Journal of Molecular Biology|language=en|volume=219|issue=3|pages=533–554|doi=10.1016/0022-2836(91)90192-9|pmid=2051487|issn=0022-2836|url-access=subscription}} and then in Streptomyces.{{Cite journal|last1=Yue|first1=Q. Kimberley|last2=Kass|first2=Ignatius J.|last3=Sampson|first3=Nicole S.|last4=Vrielink|first4=Alice|date=1999-04-01|title=Crystal Structure Determination of Cholesterol Oxidase from Streptomyces and Structural Characterization of Key Active Site Mutants|url=https://pubs.acs.org/doi/10.1021/bi982497j|journal=Biochemistry|language=en|volume=38|issue=14|pages=4277–4286|doi=10.1021/bi982497j|pmid=10194345|issn=0006-2960|url-access=subscription}}

She has been involved in projects that have established the structure of compounds including L-amino-acid oxidase,{{Cite journal|last=Pawelek|first=P. D.|date=2000-08-15|title=The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site|url=http://emboj.embopress.org/cgi/doi/10.1093/emboj/19.16.4204|journal=The EMBO Journal|volume=19|issue=16|pages=4204–4215|doi=10.1093/emboj/19.16.4204|pmc=302035|pmid=10944103}} prions,{{Cite journal|last1=Burns|first1=Colin S.|last2=Aronoff-Spencer|first2=Eliah|last3=Dunham|first3=Christine M.|last4=Lario|first4=Paula|last5=Avdievich|first5=Nikolai I.|last6=Antholine|first6=William E.|last7=Olmstead|first7=Marilyn M.|last8=Vrielink|first8=Alice|last9=Gerfen|first9=Gary J.|last10=Peisach|first10=Jack|last11=Scott|first11=William G.|date=2002-03-01|title=Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein|url=https://doi.org/10.1021/bi011922x|journal=Biochemistry|volume=41|issue=12|pages=3991–4001|doi=10.1021/bi011922x|pmid=11900542|pmc=2905306|issn=0006-2960}} and snake venom.{{Cite journal|last1=Kang|first1=Tse Siang|last2=Georgieva|first2=Dessislava|last3=Genov|first3=Nikolay|last4=Murakami|first4=Mário T.|last5=Sinha|first5=Mau|last6=Kumar|first6=Ramasamy P.|last7=Kaur|first7=Punit|last8=Kumar|first8=Sanjit|last9=Dey|first9=Sharmistha|last10=Sharma|first10=Sujata|last11=Vrielink|first11=Alice|date=2011|title=Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis|journal=The FEBS Journal|language=en|volume=278|issue=23|pages=4544–4576|doi=10.1111/j.1742-4658.2011.08115.x|pmid=21470368|s2cid=40199362|issn=1742-4658|doi-access=free|hdl=11449/22039|hdl-access=free}} In 2017, she mapped the molecular structure of EptA,{{Cite journal|last1=Anandan|first1=Anandhi|last2=Evans|first2=Genevieve L.|last3=Condic-Jurkic|first3=Karmen|last4=O’Mara|first4=Megan L.|last5=John|first5=Constance M.|last6=Phillips|first6=Nancy J.|last7=Jarvis|first7=Gary A.|last8=Wills|first8=Siobhan S.|last9=Stubbs|first9=Keith A.|last10=Moraes|first10=Isabel|last11=Kahler|first11=Charlene M.|last12=Vrielink|first12=Alice|date=2017-02-28|title=Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding|journal=Proceedings of the National Academy of Sciences|language=en|volume=114|issue=9|pages=2218–2223|doi=10.1073/pnas.1612927114|issn=0027-8424|pmc=5338521|pmid=28193899|bibcode=2017PNAS..114.2218A |doi-access=free}} a protein that shields superbugs from antibiotics. This work has been covered by the BBC,{{Cite news|last=Dunlop|first=Greg|date=15 February 2017|title=Antibiotic resistance: Scientists 'unmask' superbug-shielding protein|work=BBC News|url=https://www.bbc.com/news/world-australia-38977259|access-date=7 February 2018}} ABC,{{Cite news|last=Wildie|first=Tom|date=14 February 2017|title=Australian scientists make breakthrough in fight against superbugs|work=ABC News|url=http://www.abc.net.au/news/2017-02-15/antibiotic-resistant-superbug-discovery-at-university-of-wa/8270470|access-date=7 February 2018}} Times Higher Education,{{Cite web|title=Stopping the rise of the superbug|url=http://timeshighereducationonline.com/the-university-of-western-australia/p/stopping-superbugs|url-status=dead|archive-url=https://web.archive.org/web/20180208004709/http://timeshighereducationonline.com/the-university-of-western-australia/p/stopping-superbugs|archive-date=2018-02-08|access-date=2018-02-07|website=Times Higher Education}} The West Australian,{{Cite news|last=O'Leary|first=Cathy|date=14 February 2017|title=UWA breakthrough in superbug battle|work=The West Australian|url=https://thewest.com.au/news/wa/uwa-breakthrough-in-superbug-battle-ng-b88386018z|access-date=7 February 2018}} and Particle.{{Cite web|last=Mitchell|first=Samille|date=14 March 2017|title=WA Scientists Fight Deadly Superbugs|url=https://particle.scitech.org.au/people/wa-superbug-research-exciting-medical-research-world-particle/|website=Particle}} Subsequent work on EptA has revealed why it may be a good target for drug development.{{Cite journal|last1=Kahler|first1=Charlene M.|last2=Nawrocki|first2=K. L.|last3=Anandan|first3=A.|last4=Vrielink|first4=Alice|last5=Shafer|first5=William M.|date=2018|title=Structure-Function Relationships of the Neisserial EptA Enzyme Responsible for Phosphoethanolamine Decoration of Lipid A: Rationale for Drug Targeting|journal=Frontiers in Microbiology|volume=9|pages=1922|doi=10.3389/fmicb.2018.01922|pmid=30186254|pmc=6111236|issn=1664-302X|doi-access=free}}{{Cite journal|last1=Anandan|first1=Anandhi|last2=Dunstan|first2=Nicholas W.|last3=Ryan|first3=Timothy M.|last4=Mertens|first4=Haydyn D. T.|last5=Lim|first5=Katherine Y. L.|last6=Evans|first6=Genevieve L.|last7=Kahler|first7=Charlene M.|last8=Vrielink|first8=Alice|date=2021-09-01|title=Conformational flexibility of EptA driven by an interdomain helix provides insights for enzyme–substrate recognition|url=https://scripts.iucr.org/cgi-bin/paper?S2052252521005613|journal=IUCrJ|volume=8|issue=5|pages=732–746|doi=10.1107/S2052252521005613|issn=2052-2525|pmc=8420757|pmid=34584735}}

Selected publications

  • {{Cite journal|date=1994-08-01|title=Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose.|journal=The EMBO Journal|volume=13|issue=15|pages=3413–3422|doi=10.1002/j.1460-2075.1994.tb06646.x|issn=0261-4189|last1=Vrielink|first1=A.|last2=Rüger|first2=W.|last3=Driessen|first3=H.P.|last4=Freemont|first4=P.S.|pmid=8062817|pmc=395243}}
  • {{Cite journal|last1=Vrielink|first1=Alice|last2=Lloyd|first2=Lesley F|last3=Blow|first3=David M|date=1991-06-05|title=Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 Å resolution|url=https://dx.doi.org/10.1016/0022-2836%2891%2990192-9|journal=Journal of Molecular Biology|language=en|volume=219|issue=3|pages=533–554|doi=10.1016/0022-2836(91)90192-9|pmid=2051487|issn=0022-2836|url-access=subscription}}
  • {{Cite journal|date=2000-08-15|title=The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site|url=https://www.embopress.org/doi/full/10.1093/emboj/19.16.4204|journal=The EMBO Journal|volume=19|issue=16|pages=4204–4215|doi=10.1093/emboj/19.16.4204|issn=0261-4189|pmc=302035|pmid=10944103|last1=Pawelek|first1=P. D.|last2=Cheah|first2=J.|last3=Coulombe|first3=R.|last4=Macheroux|first4=P.|last5=Ghisla|first5=S.|last6=Vrielink|first6=A.}}
  • {{Cite journal|last1=Burns|first1=Colin S.|last2=Aronoff-Spencer|first2=Eliah|last3=Dunham|first3=Christine M.|last4=Lario|first4=Paula|last5=Avdievich|first5=Nikolai I.|last6=Antholine|first6=William E.|last7=Olmstead|first7=Marilyn M.|last8=Vrielink|first8=Alice|last9=Gerfen|first9=Gary J.|last10=Peisach|first10=Jack|last11=Scott|first11=William G.|date=2002-03-01|title=Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein|journal=Biochemistry|language=en|volume=41|issue=12|pages=3991–4001|doi=10.1021/bi011922x|pmid=11900542|pmc=2905306|issn=0006-2960}}

References

{{Reflist}}