Alternated hexagonal tiling honeycomb

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Alternated hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
Semiregular honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh{6,3,3}
s{3,6,3}
2s{6,3,6}
2s{6,3[3]}
s{3[3,3]}
bgcolor=#e7dcc3|Coxeter diagrams{{CDDnode_h1|6|node|3|node|3|node}} ↔ {{CDD|branch_10ru|split2|node|3|node}}
{{CDD
node_h|3|node_h|6|node|3|node}}
{{CDD
node|6|node_h|3|node_h|6|node}}
{{CDD|branch_hh|split2|node_h|6|node}} ↔ {{CDD
node_h0|6|node_h|3|node_h|6|node}}
{{CDD|branch_hh|splitcross|branch_hh}} ↔ {{CDD|branch_hh|split2|node_h|6|node_h0}} ↔ {{CDD|node_h0|6|node_h|3|node_h|6|node_h0}}
bgcolor=#e7dcc3|Cells|{3,3} 40px
{3[3]} 40px
bgcolor=#e7dcc3|Facestriangle {3}
bgcolor=#e7dcc3|Vertex figure40px {{CDD|node_1|3|node_1|3|node}}
truncated tetrahedron
bgcolor=#e7dcc3|Coxeter groups{\overline{P}}_3, [3,3[3]]
1/2 {\overline{V}}_3, [6,3,3]
1/2 {\overline{Y}}_3, [3,6,3]
1/2 {\overline{Z}}_3, [6,3,6]
1/2 {\overline{VP}}_3, [6,3[3]]
1/2 {\overline{PP}}_3, [3[3,3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive, quasiregular

In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, {{CDD||node_h1|6|node|3|node|3|node}} or {{CDD|branch_10ru|split2|node|3|node}}, is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.

{{Honeycomb}}

Symmetry constructions

File:Hyperbolic subgroup tree 336-direct.png]]

It has five alternated constructions from reflectional Coxeter groups all with four mirrors and only the first being regular: {{CDD|node_c1|6|node|3|node|3|node}} [6,3,3], {{CDD|node_c1|3|node_c1|6|node|3|node}} [3,6,3], {{CDD|node|6|node_c1|3|node_c1|6|node}} [6,3,6], {{CDD|branch_c1|split2|node_c1|6|node}} [6,3[3]] and [3[3,3]] {{CDD|branch_c1|splitcross|branch_c1}}, having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are {{CDD|node_h|6|node|3|node|3|node}}, {{CDD|node_h|3|node_h|6|node|3|node}}, {{CDD|node|6|node_h|3|node_h|6|node}}, {{CDD|branch_hh|split2|node_h|6|node}} and {{CDD|branch_hh|splitcross|branch_hh}}, representing different types (colors) of hexagonal tilings in the Wythoff construction.

{{-}}

Related honeycombs

The alternated hexagonal tiling honeycomb has 3 related forms: the cantic hexagonal tiling honeycomb, {{CDD|node_h1|6|node|3|node_1|3|node}}; the runcic hexagonal tiling honeycomb, {{CDD|node_h1|6|node|3|node|3|node_1}}; and the runcicantic hexagonal tiling honeycomb, {{CDD|node_h1|6|node|3|node_1|3|node_1}}.

=Cantic hexagonal tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantic hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh2{6,3,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDDnode_h1|6|node|3|node_1|3|node}} ↔ {{CDD|branch_10ru|split2|node_1|3|node}}
bgcolor=#e7dcc3|Cellsr{3,3} 40px
t{3,3} 40px
h2{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
wedge
bgcolor=#e7dcc3|Coxeter groups{\overline{P}}_3, [3,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantic hexagonal tiling honeycomb, h2{6,3,3}, {{CDD||node_h1|6|node|3|node_1|3|node}} or {{CDD|branch_10ru|split2|node_1|3|node}}, is composed of octahedron, truncated tetrahedron, and trihexagonal tiling facets, with a wedge vertex figure.

{{-}}

=Runcic hexagonal tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcic hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh3{6,3,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDDnode_h1|6|node|3|node|3|node_1}} ↔ {{CDD|branch_10ru|split2|node|3|node_1}}
bgcolor=#e7dcc3|Cells{3,3} 40px
{}x{3} 40px
rr{3,3} 40px
{3[3]} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
triangular cupola
bgcolor=#e7dcc3|Coxeter groups{\overline{P}}_3, [3,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcic hexagonal tiling honeycomb, h3{6,3,3}, {{CDD||node_h1|6|node|3|node|3|node_1}} or {{CDD|branch_10ru|split2|node|3|node_1}}, has tetrahedron, triangular prism, cuboctahedron, and triangular tiling facets, with a triangular cupola vertex figure.

{{-}}

=Runcicantic hexagonal tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcicantic hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh2,3{6,3,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDDnode_h1|6|node|3|node_1|3|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|3|node_1}}
bgcolor=#e7dcc3|Cellst{3,3} 40px
{}x{3} 40px
tr{3,3} 40px
h2{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
rectangular pyramid
bgcolor=#e7dcc3|Coxeter groups{\overline{P}}_3, [3,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcicantic hexagonal tiling honeycomb, h2,3{6,3,3}, {{CDD||node_h1|6|node|3|node_1|3|node_1}} or {{CDD|branch_10ru|split2|node_1|3|node_1}}, has truncated tetrahedron, triangular prism, truncated octahedron, and trihexagonal tiling facets, with a rectangular pyramid vertex figure.

{{-}}

See also

References

{{reflist}}

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space] {{Webarchive|url=https://web.archive.org/web/20160610043106/http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf |date=2016-06-10 }}) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I,II)
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [https://link.springer.com/article/10.1007%2FBF01238563] [https://web.archive.org/web/20140223225217/http://homeweb1.unifr.ch/kellerha/pub/TGarticle.pdf]
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [http://www.sciencedirect.com/science/article/pii/S0024379501004773]

Category:Hexagonal tilings

Category:3-honeycombs