Alternated hexagonal tiling honeycomb
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Alternated hexagonal tiling honeycomb | |||||
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb Semiregular honeycomb | ||||
bgcolor=#e7dcc3|Schläfli symbols | h{6,3,3} s{3,6,3} 2s{6,3,6} 2s{6,3[3]} s{3[3,3]} | ||||
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD | node_h1|6|node|3|node|3|node}} ↔ {{CDD|branch_10ru|split2|node|3|node}} {{CDD | node_h|3|node_h|6|node|3|node}} {{CDD | node|6|node_h|3|node_h|6|node}} {{CDD|branch_hh|split2|node_h|6|node}} ↔ {{CDD | node_h0|6|node_h|3|node_h|6|node}} {{CDD|branch_hh|splitcross|branch_hh}} ↔ {{CDD|branch_hh|split2|node_h|6|node_h0}} ↔ {{CDD|node_h0|6|node_h|3|node_h|6|node_h0}} |
bgcolor=#e7dcc3|Cells | |{3,3} 40px {3[3]} 40px | ||||
bgcolor=#e7dcc3|Faces | triangle {3} | ||||
bgcolor=#e7dcc3|Vertex figure | 40px {{CDD|node_1|3|node_1|3|node}} truncated tetrahedron | ||||
bgcolor=#e7dcc3|Coxeter groups | , [3,3[3]] 1/2 , [6,3,3] 1/2 , [3,6,3] 1/2 , [6,3,6] 1/2 , [6,3[3]] 1/2 , [3[3,3]] | ||||
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive, quasiregular |
In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, {{CDD||node_h1|6|node|3|node|3|node}} or {{CDD|branch_10ru|split2|node|3|node}}, is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.
{{Honeycomb}}
Symmetry constructions
File:Hyperbolic subgroup tree 336-direct.png]]
It has five alternated constructions from reflectional Coxeter groups all with four mirrors and only the first being regular: {{CDD|node_c1|6|node|3|node|3|node}} [6,3,3], {{CDD|node_c1|3|node_c1|6|node|3|node}} [3,6,3], {{CDD|node|6|node_c1|3|node_c1|6|node}} [6,3,6], {{CDD|branch_c1|split2|node_c1|6|node}} [6,3[3]] and [3[3,3]] {{CDD|branch_c1|splitcross|branch_c1}}, having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are {{CDD|node_h|6|node|3|node|3|node}}, {{CDD|node_h|3|node_h|6|node|3|node}}, {{CDD|node|6|node_h|3|node_h|6|node}}, {{CDD|branch_hh|split2|node_h|6|node}} and {{CDD|branch_hh|splitcross|branch_hh}}, representing different types (colors) of hexagonal tilings in the Wythoff construction.
{{-}}
Related honeycombs
The alternated hexagonal tiling honeycomb has 3 related forms: the cantic hexagonal tiling honeycomb, {{CDD|node_h1|6|node|3|node_1|3|node}}; the runcic hexagonal tiling honeycomb, {{CDD|node_h1|6|node|3|node|3|node_1}}; and the runcicantic hexagonal tiling honeycomb, {{CDD|node_h1|6|node|3|node_1|3|node_1}}.
=Cantic hexagonal tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantic hexagonal tiling honeycomb | ||
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb | |
bgcolor=#e7dcc3|Schläfli symbols | h2{6,3,3} | |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD | node_h1|6|node|3|node_1|3|node}} ↔ {{CDD|branch_10ru|split2|node_1|3|node}} |
bgcolor=#e7dcc3|Cells | r{3,3} 40px t{3,3} 40px h2{6,3} 40px | |
bgcolor=#e7dcc3|Faces | triangle {3} hexagon {6} | |
bgcolor=#e7dcc3|Vertex figure | 80px wedge | |
bgcolor=#e7dcc3|Coxeter groups | , [3,3[3]] | |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantic hexagonal tiling honeycomb, h2{6,3,3}, {{CDD||node_h1|6|node|3|node_1|3|node}} or {{CDD|branch_10ru|split2|node_1|3|node}}, is composed of octahedron, truncated tetrahedron, and trihexagonal tiling facets, with a wedge vertex figure.
{{-}}
=Runcic hexagonal tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcic hexagonal tiling honeycomb | ||
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb | |
bgcolor=#e7dcc3|Schläfli symbols | h3{6,3,3} | |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD | node_h1|6|node|3|node|3|node_1}} ↔ {{CDD|branch_10ru|split2|node|3|node_1}} |
bgcolor=#e7dcc3|Cells | {3,3} 40px {}x{3} 40px rr{3,3} 40px {3[3]} 40px | |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} | |
bgcolor=#e7dcc3|Vertex figure | 80px triangular cupola | |
bgcolor=#e7dcc3|Coxeter groups | , [3,3[3]] | |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcic hexagonal tiling honeycomb, h3{6,3,3}, {{CDD||node_h1|6|node|3|node|3|node_1}} or {{CDD|branch_10ru|split2|node|3|node_1}}, has tetrahedron, triangular prism, cuboctahedron, and triangular tiling facets, with a triangular cupola vertex figure.
{{-}}
=Runcicantic hexagonal tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcicantic hexagonal tiling honeycomb | ||
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb | |
bgcolor=#e7dcc3|Schläfli symbols | h2,3{6,3,3} | |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD | node_h1|6|node|3|node_1|3|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|3|node_1}} |
bgcolor=#e7dcc3|Cells | t{3,3} 40px {}x{3} 40px tr{3,3} 40px h2{6,3} 40px | |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} | |
bgcolor=#e7dcc3|Vertex figure | 80px rectangular pyramid | |
bgcolor=#e7dcc3|Coxeter groups | , [3,3[3]] | |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcicantic hexagonal tiling honeycomb, h2,3{6,3,3}, {{CDD||node_h1|6|node|3|node_1|3|node_1}} or {{CDD|branch_10ru|split2|node_1|3|node_1}}, has truncated tetrahedron, triangular prism, truncated octahedron, and trihexagonal tiling facets, with a rectangular pyramid vertex figure.
{{-}}
See also
References
{{reflist}}
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space] {{Webarchive|url=https://web.archive.org/web/20160610043106/http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf |date=2016-06-10 }}) Table III
- Jeffrey R. Weeks The Shape of Space, 2nd edition {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I,II)
- N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [https://link.springer.com/article/10.1007%2FBF01238563] [https://web.archive.org/web/20140223225217/http://homeweb1.unifr.ch/kellerha/pub/TGarticle.pdf]
- N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [http://www.sciencedirect.com/science/article/pii/S0024379501004773]