Aluthge transform
In mathematics and more precisely in functional analysis, the Aluthge transformation is an operation defined on the set of bounded operators of a Hilbert space. It was introduced by Ariyadasa Aluthge to study p-hyponormal linear operators.{{Cite journal|last=Aluthge|first=Ariyadasa|date=1990|title=On p-hyponormal operators for 0 < p < 1|journal=Integral Equations Operator Theory|volume=13|issue=3|pages=307–315|doi=10.1007/bf01199886}}
Definition
Let be a Hilbert space and let be the algebra of linear operators from to . By the polar decomposition theorem, there exists a unique partial isometry such that and , where is the square root of the operator . If and is its polar decomposition, the Aluthge transform of is the operator defined as:
:
More generally, for any real number , the -Aluthge transformation is defined as
:
Example
For vectors , let denote the operator defined as
:
An elementary calculation{{cite journal |last1=Chabbabi |first1=Fadil |last2=Mbekhta |first2=Mostafa |title=Jordan product maps commuting with the λ-Aluthge transform |journal=Journal of Mathematical Analysis and Applications |date=June 2017 |volume=450 |issue=1 |pages=293–313 |doi=10.1016/j.jmaa.2017.01.036|doi-access= }} shows that if , then
Notes
{{Reflist}}
References
- {{Cite journal|last=Antezana|first=Jorge|last2=Pujals|first2=Enrique R.|last3=Stojanoff|first3=Demetrio|date=2008|title=Iterated Aluthge transforms: a brief survey|url=http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0041-69322008000100004|journal=Revista de la Unión Matemática Argentina|volume=49|pages=29–41}}
External links
- {{MathGenealogy|id=59270|59270|title=Ariyadasa Aluthge|Ariyadasa Aluthge}}