Alvis–Curtis duality

In mathematics, the Alvis–Curtis duality is a duality operation on the characters of a reductive group over a finite field, introduced by {{harvs|last=Curtis|first=Charles W.|authorlink=Charles W. Curtis|txt|year=1980}} and studied by his student {{harvs|last=Alvis|first=Dean|txt|year=1979}}. {{harvs|txt|last=Kawanaka|year1=1981|year2=1982}} introduced a similar duality operation for Lie algebras.

Alvis–Curtis duality has order 2 and is an isometry on generalized characters.

{{harvtxt|Carter|1985|loc=8.2}} discusses Alvis–Curtis duality in detail.

Definition

The dual ζ* of a character ζ of a finite group G with a split BN-pair is defined to be

:\zeta^*=\sum_{J\subseteq R}(-1)^{\vert J\vert}\zeta^G_{P_J}

Here the sum is over all subsets J of the set R of simple roots of the Coxeter system of G. The character ζ{{su|p=|b=PJ}} is the truncation of ζ to the parabolic subgroup PJ of the subset J, given by restricting ζ to PJ and then taking the space of invariants of the unipotent radical of PJ, and ζ{{su|p=G|b=PJ}} is the induced representation of G. (The operation of truncation is the adjoint functor of parabolic induction.)

Examples

References

  • {{Citation | last1=Alvis | first1=Dean | title=The duality operation in the character ring of a finite Chevalley group | doi=10.1090/S0273-0979-1979-14690-1 | mr=546315 | year=1979 | journal=Bulletin of the American Mathematical Society |series=New Series | issn=0002-9904 | volume=1 | issue=6 | pages=907–911| doi-access=free }}
  • {{Citation | last1=Carter | first1=Roger W. | author1-link=Roger Carter (mathematician) | title=Finite groups of Lie type. Conjugacy classes and complex characters. | url=https://books.google.com/books?id=LvvuAAAAMAAJ | publisher=John Wiley & Sons | location=New York | series=Pure and Applied Mathematics (New York) | isbn=978-0-471-90554-7 | mr=794307 | year=1985}}
  • {{Citation | last1=Curtis | first1=Charles W. | authorlink = Charles W. Curtis | title=Truncation and duality in the character ring of a finite group of Lie type | doi=10.1016/0021-8693(80)90185-4 | mr=563231 | year=1980 | journal=Journal of Algebra | issn=0021-8693 | volume=62 | issue=2 | pages=320–332| doi-access=free }}
  • {{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | last2=Lusztig | first2=George | title=Duality for representations of a reductive group over a finite field | doi=10.1016/0021-8693(82)90023-0 | mr=644236 | year=1982 | journal=Journal of Algebra | issn=0021-8693 | volume=74 | issue=1 | pages=284–291| doi-access=free }}
  • {{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | last2=Lusztig | first2=George | title=Duality for representations of a reductive group over a finite field. II | doi=10.1016/0021-8693(83)90202-8 | mr=700298 | year=1983 | journal=Journal of Algebra | issn=0021-8693 | volume=81 | issue=2 | pages=540–545| doi-access=free }}
  • {{Citation | last1=Kawanaka | first1=Noriaki | title=Fourier transforms of nilpotently supported invariant functions on a finite simple Lie algebra | url=http://projecteuclid.org/getRecord?id=euclid.pja/1195516260 | mr=637555 | year=1981 | journal=Japan Academy. Proceedings. Series A. Mathematical Sciences | issn=0386-2194 | volume=57 | issue=9 | pages=461–464 | doi=10.3792/pjaa.57.461| doi-access=free }}
  • {{Citation | last1=Kawanaka | first1=N. | title=Fourier transforms of nilpotently supported invariant functions on a simple Lie algebra over a finite field | doi=10.1007/BF01389363 | mr=679766 | year=1982 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=69 | issue=3 | pages=411–435| bibcode=1982InMat..69..411K | s2cid=119866092 }}

{{DEFAULTSORT:Alvis-Curtis duality}}

Category:Representation theory

Category:Duality theories