Anafunctor

{{Short description|Mathematical notion}}

{{Wiktionary|anafunctor}}

An anafunctor{{refn|group=note|The etymology of anafunctor is an analogy of the biological terms anaphase/prophase.{{R|Roberts2011}}}} is a notion introduced by {{harvtxt|Makkai|1996}} for ordinary categories that is a generalization of functors.{{R|Roberts2011}} In category theory, some statements require the axiom of choice, but the axiom of choice can sometimes be avoided when using an anafunctor.{{harv|Makkai|1998}} For example, the statement "every fully faithful and essentially surjective functor is an equivalence of categories" is equivalent to the axiom of choice, but we can usually follow the same statement without the axiom of choice by using anafunctor instead of functor.{{R|Roberts2011}}{{harv|anafunctor in nlab|loc=§1. Idea}}

Definition

= Span formulation of anafunctors =

File:Anafunctor (span).svg

Let {{mvar|X}} and {{mvar|A}} be categories. An anafunctor {{mvar|F}} with domain (source) {{mvar|X}} and codomain (target) {{mvar|A}}, and between categories {{mvar|X}} and {{mvar|A}} is a category |F|, in a notation F:X \xrightarrow{a} A, is given by the following conditions:{{harv|Roberts|2011}}{{harv|Makkai|1996|loc = §1.1. and 1.1*. Anafunctors }}{{harv|Palmgren|2008|loc=§2. Anafunctors}}{{harv|Schreiber|Waldorf|2007|loc=§7.4. Anafunctors}}{{harv|anafunctor in nlab|loc=§2. Definitions}}

  • F_0 is surjective on objects.
  • Let pair F_0:|F| \rightarrow X and F_1:|F| \rightarrow A be functors, a span of ordinary functors (X \leftarrow |F| \rightarrow A), where F_0 is fully faithful.

=Set-theoretic definition=

{{multiple image

| direction = vertical

| width = 180

| image1 = Commutative diagram for morphism.svg

| image2 = Commutative diagram for morphism 2.svg

| footer = (5)

}}

An anafunctor F: X \xrightarrow{a} A following condition:{{R|Makkai1998}}{{harv|Makkai|1996|loc=§1.1. Anafunctor}}{{harv|anafunctor in nlab|loc=§2. Anafunctors (Explicit set-theoretic definition)}}

  1. A set |F| of specifications of F, with maps \sigma : |F| \to \mathrm{Ob} (X) (source), \tau : |F| \to \mathrm{Ob} (A) (target). |F| is the set of specifications, s \in |F| specifies the value \tau (s) at the argument \sigma (s). For X \in \mathrm{Ob} (X), we write |F| \; X for the class \{s \in |F| : \sigma (s) = X\} and F_{s} (X) for \tau (s) the notation F_{s} (X) presumes that s \in |F| \; X.
  2. For each X, \; Y \in \mathrm{Ob} (X), x \in |F| \; X, y \in |F| \; Y and f : X \to Y in the class of all arrows \mathrm{Arr (X)} an arrows F_{x,y} (f) : F_{x} (X) \to F_{y} (Y) in A.
  3. For every X \in \mathrm{Ob} (X), such that |F| \; X is inhabited (non-empty).
  4. F hold identity. For all X \in \mathrm{Ob} (X) and x \in |F| \; X, we have F_{x,x} (\mathrm{id}_x) = \mathrm{id}_{F_{x}X}
  5. F hold composition. Whenever X, Y, Z \in \mathrm{Ob} (X), x \in |F| \; X, y \in |F| \; Y, z \in |F| \; Z, and F_{x,z} (gf) = F_{y,z} (g) \circ F_{x,y} (f)

.

See also

Notes

{{Reflist|group=note}}

References

{{reflist}}

Bibliography

  • {{cite journal |doi=10.1016/0022-4049(95)00029-1 |title=Avoiding the axiom of choice in general category theory |date=1996 |last1=Makkai |first1=M. |author-link1= Michael Makkai|journal=Journal of Pure and Applied Algebra |volume=108 |issue=2 |pages=109–173 }}
  • {{cite book|last1=Makkai |first1=M. |chapter-url=https://projecteuclid.org/ebooks/lecture-notes-in-logic/Logic-Colloquium-95--Proceedings-of-the-Annual-European-Summer/chapter/Towards-a-Categorical-Foundation-of-Mathematics/lnl/1235415906?tab=ArticleLinkCited | title=Logic Colloquium '95: Proceedings of the Annual European Summer Meeting of the Association of Symbolic Logic, held in Haifa, Israel, August 9-18, 1995 | chapter=Towards a Categorical Foundation of Mathematics | date=1998 | volume=11 | pages=153–191 | publisher=Association for Symbolic Logic|zbl = 0896.03051 }}
  • {{cite journal |url=https://eudml.org/doc/129995 |title=Locally cartesian closed categories without chosen constructions |journal=Theory and Applications of Categories |date=2008 |volume=20 |pages=5–17 |last1=Palmgren |first1=Erik }}
  • {{cite journal |url=http://www.tac.mta.ca/tac/volumes/26/29/26-29.pdf |title=Internal categories, anafunctors and localisations |last1=Roberts |first1=David M. |date=2011 |arxiv=1101.2363|journal=Theory and Application of Categories }}
  • {{cite journal|arxiv=0705.0452 |last1=Schreiber |first1=Urs |last2=Waldorf |first2=Konrad |title=Parallel Transport and Functors |date=2007|url=http://tcms.org.ge/Journals/JHRS/xvolumes/2009/n1a10/v4n1a10.pdf|journal=Journal of Homotopy and Related Structures }}

Further reading

  • {{cite journal |doi=10.1017/S0305004100038202 |title=Complete functors in homology I. Chain maps and endomorphisms |date=1964 |last1=Kelly |first1=G. M. |journal=Mathematical Proceedings of the Cambridge Philosophical Society |volume=60 |issue=4 |pages=721–735 |bibcode=1964PCPS...60..721K }} - Kelly had already noticed a notion that was essentially the same as anafunctor in this paper, but did not seem to develop the notion further.