Appell's equation of motion

{{Short description|Formulation of classical mechanics}}

{{classical mechanics|Formulations}}

In classical mechanics, Appell's equation of motion (aka the Gibbs–Appell equation of motion) is an alternative general formulation of classical mechanics described by Josiah Willard Gibbs in 1879{{cite journal|last=Gibbs|first=JW|year=1879|title=On the Fundamental Formulae of Dynamics.|journal=American Journal of Mathematics|volume=2|issue=1|pages=49–64|doi=10.2307/2369196|jstor=2369196}} and Paul Émile Appell in 1900.{{cite journal | last = Appell | first = P | year = 1900 | title = Sur une forme générale des équations de la dynamique. | journal = Journal für die reine und angewandte Mathematik | volume = 121 | pages = 310–? }}

Statement

The Gibbs-Appell equation reads

:Q_{r} = \frac{\partial S}{\partial \alpha_{r}},

where \alpha_r = \ddot{q}_r is an arbitrary generalized acceleration, or the second time derivative of the generalized coordinates q_r , and Q_r is its corresponding generalized force. The generalized force gives the work done

:dW = \sum_{r=1}^{D} Q_{r} dq_{r},

where the index r runs over the D generalized coordinates q_r , which usually correspond to the degrees of freedom of the system. The function S is defined as the mass-weighted sum of the particle accelerations squared,

:S = \frac{1}{2} \sum_{k=1}^{N} m_{k} \mathbf{a}_{k}^{2}\,,

where the index k runs over the K particles, and

:\mathbf{a}_k = \ddot{\mathbf{r}}_k = \frac{d^2 \mathbf{r}_k}{dt^2}

is the acceleration of the

k

-th particle, the second time derivative of its position vector \mathbf{r}_k . Each \mathbf{r}_k is expressed in terms of generalized coordinates, and \mathbf{a}_k is expressed in terms of the generalized accelerations.

Relations to other formulations of classical mechanics

Appell's formulation does not introduce any new physics to classical mechanics and as such is equivalent to other reformulations of classical mechanics, such as Lagrangian mechanics, and Hamiltonian mechanics. All classical mechanics is contained within Newton's laws of motion. In some cases, Appell's equation of motion may be more convenient than the commonly used Lagrangian mechanics, particularly when nonholonomic constraints are involved. In fact, Appell's equation leads directly to Lagrange's equations of motion.{{Cite journal|last=Deslodge|first=Edward A.|date=1988|title=The Gibbs–Appell equations of motion|journal=American Journal of Physics|volume=56|issue=9|pages=841–46|doi=10.1119/1.15463|bibcode=1988AmJPh..56..841D |s2cid=123074999 |url=https://hal.archives-ouvertes.fr/hal-01399766/file/EAD.pdf}} Moreover, it can be used to derive Kane's equations, which are particularly suited for describing the motion of complex spacecraft.{{Cite journal|last=Deslodge|first=Edward A.|date=1987|title=Relationship between Kane's equations and the Gibbs-Appell equations|journal=Journal of Guidance, Control, and Dynamics|publisher=American Institute of Aeronautics and Astronautics|volume=10|issue=1|pages=120–22|doi=10.2514/3.20192|bibcode=1987JGCD...10..120D }} Appell's formulation is an application of Gauss' principle of least constraint.{{Cite journal|last=Lewis|first=Andrew D.|date=August 1996|title=The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint|journal=Reports on Mathematical Physics|volume=38|issue=1|pages=11–28|doi=10.1016/0034-4877(96)87675-0|bibcode=1996RpMP...38...11L |url=https://hal.archives-ouvertes.fr/hal-01401930/file/ADL.pdf}}

Derivation

The change in the particle positions rk for an infinitesimal change in the D generalized coordinates is

:

d\mathbf{r}_{k} = \sum_{r=1}^{D} dq_{r} \frac{\partial \mathbf{r}_{k}}{\partial q_{r}}

Taking two derivatives with respect to time yields an equivalent equation for the accelerations

:

\frac{\partial \mathbf{a}_{k}}{\partial \alpha_{r}} = \frac{\partial \mathbf{r}_{k}}{\partial q_{r}}

The work done by an infinitesimal change dqr in the generalized coordinates is

:

dW = \sum_{r=1}^{D} Q_{r} dq_{r} = \sum_{k=1}^{N} \mathbf{F}_{k} \cdot d\mathbf{r}_{k} = \sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot d\mathbf{r}_{k}

where Newton's second law for the kth particle

:\mathbf{F}_k = m_k\mathbf{a}_k

has been used. Substituting the formula for drk and swapping the order of the two summations yields the formulae

:

dW = \sum_{r=1}^{D} Q_{r} dq_{r} = \sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \sum_{r=1}^{D} dq_{r} \left( \frac{\partial \mathbf{r}_{k}}{\partial q_{r}} \right) =

\sum_{r=1}^{D} dq_{r} \sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{r}_{k}}{\partial q_{r}} \right)

Therefore, the generalized forces are

:

Q_{r} =

\sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{r}_{k}}{\partial q_{r}} \right) =

\sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{a}_{k}}{\partial \alpha_{r}} \right)

This equals the derivative of S with respect to the generalized accelerations

:

\frac{\partial S}{\partial \alpha_{r}} =

\frac{\partial}{\partial \alpha_{r}} \frac{1}{2} \sum_{k=1}^{N} m_{k} \left| \mathbf{a}_{k} \right|^{2} =

\sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{a}_{k}}{\partial \alpha_{r}} \right)

yielding Appell's equation of motion

:

\frac{\partial S}{\partial \alpha_{r}} = Q_{r}.

Examples

=Euler's equations of rigid body dynamics=

Euler's equations provide an excellent illustration of Appell's formulation.

Consider a rigid body of N particles joined by rigid rods. The rotation of the body may be described by an angular velocity vector \boldsymbol\omega, and the corresponding angular acceleration vector

:

\boldsymbol\alpha = \frac{d\boldsymbol\omega}{dt}

The generalized force for a rotation is the torque \textbf{N}, since the work done for an infinitesimal rotation \delta \boldsymbol\phi is dW = \mathbf{N} \cdot \delta \boldsymbol\phi. The velocity of the k-th particle is given by

:

\mathbf{v}_{k} = \boldsymbol\omega \times \mathbf{r}_{k}

where

\mathbf{r}_{k}

is the particle's position in Cartesian coordinates; its corresponding acceleration is

:

\mathbf{a}_{k} = \frac{d\mathbf{v}_{k}}{dt} =

\boldsymbol\alpha \times \mathbf{r}_{k} + \boldsymbol\omega \times \mathbf{v}_{k}

Therefore, the function

S

may be written as

:

S = \frac{1}{2} \sum_{k=1}^{N} m_{k} \left( \mathbf{a}_{k} \cdot \mathbf{a}_{k} \right)

= \frac{1}{2} \sum_{k=1}^{N} m_{k} \left\{ \left(\boldsymbol\alpha \times \mathbf{r}_{k} \right)^{2}

+ \left( \boldsymbol\omega \times \mathbf{v}_{k} \right)^{2}

+ 2 \left( \boldsymbol\alpha \times \mathbf{r}_{k} \right) \cdot \left(\boldsymbol\omega \times \mathbf{v}_{k}\right) \right\}

Setting the derivative of S with respect to \boldsymbol\alpha equal to the torque yields Euler's equations

:

I_{xx} \alpha_{x} - \left( I_{yy} - I_{zz} \right)\omega_{y} \omega_{z} = N_{x}

:

I_{yy} \alpha_{y} - \left( I_{zz} - I_{xx} \right)\omega_{z} \omega_{x} = N_{y}

:

I_{zz} \alpha_{z} - \left( I_{xx} - I_{yy} \right)\omega_{x} \omega_{y} = N_{z}

See also

References

{{reflist|1}}

Further reading

  • {{cite book | last = Pars | first = LA | year = 1965 | title = A Treatise on Analytical Dynamics | publisher = Ox Bow Press | location =Woodbridge, Connecticut | pages = 197–227,631–632 }}
  • {{cite book | last = Whittaker | first = ET |authorlink=E. T. Whittaker| year = 1937 | title = A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies | edition = 4th | publisher = Dover Publications | location = New York | id = ISBN }}
  • {{cite journal | last = Seeger | year = 1930 | title = Appell's equations | journal = Journal of the Washington Academy of Sciences | volume = 20 | pages = 481–484 }}
  • {{cite journal | last = Brell | first = H | year = 1913 | title = Nachweis der Aquivalenz des verallgemeinerten Prinzipes der kleinsten Aktion mit dem Prinzip des kleinsten Zwanges | journal = Wien. Sitz. | volume = 122 | pages = 933–944 }} Connection of Appell's formulation with the principle of least action.
  • [http://www.digizeitschriften.de/resolveppn/GDZPPN002164566 PDF copy of Appell's article at Goettingen University]
  • [http://www.digizeitschriften.de/resolveppn/GDZPPN002164760 PDF copy of a second article on Appell's equations and Gauss's principle]

Category:Classical mechanics