Arf ring

{{Short description|1-dimensional ring with special properties}}

In mathematics, an Arf ring was defined by {{harvtxt|Lipman|1971}} to be a 1-dimensional commutative semi-local Macaulay ring satisfying some extra conditions studied by {{harvs|txt|last=Arf|first=Cahit|authorlink=Cahit Arf|year=1948}}.

References

  • {{Citation | last1=Arf | first1=Cahit | title=Une interprétation algébrique de la suite des ordres de multiplicité d'une branche algébrique | doi=10.1112/plms/s2-50.4.256 | mr=0031785 | year=1948 | journal=Proceedings of the London Mathematical Society | series = Second series | issn=0024-6115 | volume=50 | pages=256–287}}
  • {{Citation | last1=Lipman | first1=Joseph | title=Stable ideals and Arf rings | jstor=2373463 | mr=0282969 | year=1971 | journal=American Journal of Mathematics | issn=0002-9327 | volume=93 | pages=649–685 | doi=10.2307/2373463 | issue=3 | publisher=The Johns Hopkins University Press}}

Category:Commutative algebra

Category:Turkish inventions

{{commutative-algebra-stub}}