Arthrobacter globiformis

{{Short description|Species of bacterium}}

{{Italic title}}

{{Speciesbox

| taxon = Arthrobacter globiformis

| authority = corrig. (Conn 1928) Conn and Dimmick 1947 (Approved Lists 1980)

| type_strain = ATCC 8010[https://lpsn.dsmz.de/genus/arthrobacter LPSN lpsn.dsmz.de]
BCRC 10598
CCRC 10598
CCUG 12157
CCUG 28997
CCUG 581
CGMCC 1.1894
CIP 81.84
DSM 20124
HAMBI 1863
HAMBI 88
IAM 12438
ICPB 3434
IFO 12137
JCM 1332
LMG 3813
NBRC 12137
NCIB 8907
NCIMB 8907
NRIC 151
NRRL B-2979
VKM Ac-1112

| synonyms = Corynebacterium globiforme,
Mycobacterium globiforme

  • "Achromobacter globiformis" (Conn 1928) Bergey et al. 1930
  • Arthrobacter globiforme (Conn 1928) Conn and Dimmick 1947 (Approved Lists 1980)
  • "Bacterium globiforme" Conn 1928
  • "Corynebacterium globiforme" (Conn 1928) Wood 1950
  • "Mycobacterium globiforme" (Conn 1928) Krasil'nikov 1941

}}

Arthrobacter globiformis is a gram-positive bacterium species from the genus of Arthrobacter.{{cite journal |last1=Eschbach |first1=Martin |last2=Möbitz |first2=Henrik |last3=Rompf |first3=Alexandra |last4=Jahn |first4=Dieter |date=June 2003 |title=Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: Anaerobic adaptation of aerobic bacteria abundant in soil |journal=FEMS Microbiology Letters |volume=223 |issue=2 |pages=227–230 |doi=10.1016/S0378-1097(03)00383-5 |pmid=12829291 |s2cid=14027236}}

Description and Significance

Arthrobacter globiformis was first discovered by H. J. Conn in 1928. This bacteria was initially found in large quantities in various types of soil.{{Cite book |last=Conn |first=H. J. |url=https://books.google.com/books?id=dRgIcgAACAAJ |title=A Type of Bacteria Abundant in Productive Soils, But Apparently Lacking in Certain Soils of Low Productivity |date=1928 |publisher=Cornell University |language=en}} They start as Gram-negative rods before becoming Gram-positive cocci over time. They may also become large, oval-shaped cells called cystite by growing them in very high carbon to nitrogen ratio environments.{{Cite journal |last1=Duxbury |first1=T. |last2=Gray |first2=T. R. G. |last3=Sharples |first3=G. P. |year=1977 |title=Structure and Chemistry of Walls of Rods, Cocci and Cystites of Arthrobacter globiformis |journal=Microbiology |volume=103 |issue=1 |pages=91–99 |doi=10.1099/00221287-103-1-91 |issn=1465-2080 |doi-access=free}}{{Cite journal |last=Stevenson |first=I. L. |date=August 1963 |title=Some Observations on the So-Called 'Cystites' of the Genus Arthrobacter |url=https://cdnsciencepub.com/doi/abs/10.1139/m63-060 |journal=Canadian Journal of Microbiology |language=en |volume=9 |issue=4 |pages=467–472 |doi=10.1139/m63-060|url-access=subscription }} These bacteria have cell walls that contain polysaccharides (with monomers glucose, galactose, and rhamnose), peptidoglycan, and phosphorus. They may also have flagella as well.{{Cite journal |last1=García-López |first1=María-Luisa |title=Micrococcus |date=1999-01-01 |url=https://www.sciencedirect.com/science/article/pii/B0122270703010254 |journal=Encyclopedia of Food Microbiology |pages=1344–1350 |editor-last=Robinson |editor-first=Richard K. |place=Oxford |publisher=Elsevier |language=en |isbn=978-0-12-227070-3 |access-date=2022-03-15 |last2=Santos |first2=Jesús-Ángel |last3=Otero |first3=Andrés}} Notably, A. globiformis and its antigens and proteins are commercially available for use in research, food production, biodegradation, and water/wastewater treatment.{{Cite web |last= |first= |date=2018-02-23 |title=Arthrobacter globiformis - information sheet |url=https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/chemicals-glance/arthrobacter-globiformis.html |access-date=2022-03-15 |website=Health Canada}}

Metabolism

A. globiformis can break down substances in the soil such as agricultural chemicals, chromium, etc. They are primarily aerobic, but they can survive anaerobically using lactate, acetate, and ethanol producing fermentation for growth. Most are heterotrophic, meaning they cannot produce their own food. The choline oxidase activity of A. globiformis has been extensively characterized and is important for the production of glycine betaine, one of the few soluble osmotic regulators used by most cells.{{Cite journal |last=Gadda |first=Giovanni |title=Chapter Six - Choline oxidases |date=2020-01-01 |url=https://www.sciencedirect.com/science/article/pii/S187460472030007X |journal=The Enzymes |volume=47 |pages=137–166 |editor1-last=Chaiyen |editor1-first=Pimchai |series=Flavin-Dependent Enzymes: Mechanisms, Structures and Applications |publisher=Academic Press |doi=10.1016/bs.enz.2020.05.004 |pmid=32951822 |s2cid=221826501 |language=en |access-date=2022-03-15 |editor2-last=Tamanoi |editor2-first=Fuyuhiko|url-access=subscription }}

Genome and Genetics

The complete genome of A. globiformis has been sequenced using whole-genome shotgun sequencing. The genomes of three strains are available for public use.{{Cite web |title=Arthrobacter globiformis (ID 12154) |url=https://www.ncbi.nlm.nih.gov/genome/12154 |access-date=2022-03-15 |website=NCBI Genome}} The genome is approximately 4.89 million base pairs long, containing 4305 proteins and a 66.1% GC content. Two major phylogenetic clades exist within the Arthrobacter genus, the A. globiformis/A. citreus group and the A. nicotianae group.{{Cite web |title=Home - Arthrobacter sp. FB24 |url=https://genome.jgi.doe.gov/portal/art_f/art_f.home.html |access-date=2022-03-15 |website=Joint Genome Institute}} These two clades differ mainly in their peptidoglycan structure, teichoic acid content, and lipid composition.

See also

Further reading

  • {{cite journal|last1=Eschbach|first1=Martin|last2=Möbitz|first2=Henrik|last3=Rompf|first3=Alexandra|last4=Jahn|first4=Dieter|title=Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: Anaerobic adaptation of aerobic bacteria abundant in soil|journal=FEMS Microbiology Letters|date=June 2003|volume=223|issue=2|pages=227–230|doi=10.1016/S0378-1097(03)00383-5|pmid=12829291|s2cid=14027236 }}
  • {{cite journal|last1=Sharma|first1=Meenakshi|last2=Mishra|first2=Vandana|last3=Rau|first3=Nupur|last4=Sharma|first4=Radhey Shyam|title=Increased iron-stress resilience of maize through inoculation of siderophore-producing from mine|journal=Journal of Basic Microbiology|date=December 2015|pages=719–735|doi=10.1002/jobm.201500450|volume=56|issue=7|pmid=26632776|s2cid=22533369|doi-access=free}}
  • {{cite journal|last1=Sawai|first1=Teruo|last2=Yamaki|first2=Takahiro|last3=Ohya|first3=Toshihide|title=Purification and Some Properties of Exo-l,6--glucosidase|journal=Agricultural and Biological Chemistry|date=9 September 2014|volume=40|issue=7|pages=1293–1299|doi=10.1080/00021369.1976.10862217}}
  • {{cite journal|last1=NISHIZAWA|first1=Masako|last2=YABUSAKI|first2=Yoshiyasu|last3=KANAOKA|first3=Masaharu|title=Identification of the Catalytic Residues of Carboxylesterase from by Diisopropyl Fluorophosphate-Labeling and Site-Directed Mutagenesis|journal=Bioscience, Biotechnology, and Biochemistry|date=22 May 2014|volume=75|issue=1|pages=89–94|doi=10.1271/bbb.100576|pmid=21266781|doi-access=free}}
  • {{cite journal|last1=Ramanujam|first1=Praveen Kumar|last2=Jayaraman|first2=Jayamuthunagai|last3=Gautam|first3=Pennathur|title=Evaluation of production and kinetics parameters of rare sugar (D-tagatose) using biocatalyst|journal=Management of Environmental Quality|date=11 January 2016|volume=27|issue=1|pages=71–78|doi=10.1108/MEQ-07-2015-0124}}
  • {{cite book|editor-first1=George M.|editor-last1= Garrity|title=Bergey's manual of systematic bacteriology.|date=2012|publisher=Springer Science + Business Media|location=New York|isbn=978-0-387-68233-4|edition=2nd}}
  • {{cite book|editor1=Rosa Margesin|editor2=Franz Schinner|title=Cold-Adapted Organisms Ecology, Physiology, Enzymology and Molecular Biology|date=1999|publisher=Springer Berlin Heidelberg|location=Berlin, Heidelberg|isbn=3-662-06285-2}}
  • {{cite book |editor=Wijffels |editor-first=R.H. |editor-last2=Buitelaar |editor-first2=R.M. |editor-last3=Bucke |editor-first3=C. |editor-last4=Tramper |editor-first4=J. |display-editors= |title=Immobilized Cells Basics and Applications. |date=1996 |publisher=Elsevier |location=Burlington |isbn=0-08-053447-3}}
  • {{cite book |editor1=Goldman |editor-first=Emanuel |editor2=Green |editor-first2=Lorrence H. |title=Practical handbook of microbiology |date=2009 |publisher=CRC Press |location=Boca Raton |isbn=978-1-4200-0933-0 |edition=2nd}}

References

{{Reflist|30em}}