Bach tensor
In differential geometry and general relativity, the Bach tensor is a trace-free tensor of rank 2 which is conformally invariant in dimension {{nowrap|1=n = 4}}.Rudolf Bach, "Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs", Mathematische Zeitschrift, 9 (1921) pp. [http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002365812&IDDOC=16903 110]. Before 1968, it was the only known conformally invariant tensor that is algebraically independent of the Weyl tensor.P. Szekeres, Conformal Tensors. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 304, No. 1476 (Apr. 2, 1968), pp. [https://www.jstor.org/pss/2416002 113]–122 In abstract indices the Bach tensor is given by
:
where is the Weyl tensor, and the Schouten tensor given in terms of the Ricci tensor and scalar curvature by
:
See also
References
{{Reflist}}
Further reading
- Arthur L. Besse, Einstein Manifolds. Springer-Verlag, 2007. See Ch.4, §H "Quadratic Functionals".
- Demetrios Christodoulou, Mathematical Problems of General Relativity I. European Mathematical Society, 2008. Ch.4 §2 "Sketch of the proof of the global stability of Minkowski spacetime".
- Yvonne Choquet-Bruhat, General Relativity and the Einstein Equations. Oxford University Press, 2011. See Ch.XV §5 "Christodoulou-Klainerman theorem" which notes the Bach tensor is the "dual of the Coton tensor which vanishes for conformally flat metrics".
- Thomas W. Baumgarte, Stuart L. Shapiro, Numerical Relativity: Solving Einstein's Equations on the Computer. Cambridge University Press, 2010. See Ch.3.
Category:Tensors in general relativity
{{differential-geometry-stub}}
{{relativity-stub}}
{{math-physics-stub}}