Balding–Nichols model

{{Short description|Model in population genetics}}

{{Probability distribution

| name = Balding-Nichols

| type = density

| pdf_image = 352px

| cdf_image = 352px

| parameters = 0 < F < 1(real)
0< p < 1 (real)
For ease of notation, let
\alpha=\tfrac{1-F}{F}p, and
\beta=\tfrac{1-F}{F}(1-p)

| support = x \in (0; 1)\!

| pdf = \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)}\!

| cdf = I_x(\alpha,\beta)\!

| mean = p\!

| median = I_{0.5}^{-1}(\alpha,\beta) no closed form

| mode = \frac{F-(1-F)p}{3F-1}

| variance = Fp(1-p)\!

| skewness = \frac{2F(1-2p)}{(1+F)\sqrt{F(1-p)p}}

| kurtosis =

| entropy =

| mgf = 1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\frac{1-F}{F}+r}\right) \frac{t^k}{k!}

| char = {}_1F_1(\alpha; \alpha+\beta; i\,t)\!

}}

In population genetics, the Balding–Nichols model is a statistical description of the allele frequencies in the components of a sub-divided population.{{cite journal |last1=Balding |first1=DJ |last2=Nichols |first2=RA |year=1995 |title=A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. |journal=Genetica |volume=96 |issue=1–2 |pages=3–12 |publisher=Springer |doi=10.1007/BF01441146 |pmid=7607457 |s2cid=30680826 }} With background allele frequency p the allele frequencies, in sub-populations separated by Wright's FST F, are distributed according to independent draws from

:B\left(\frac{1-F}{F}p,\frac{1-F}{F}(1-p)\right)

where B is the Beta distribution. This distribution has mean p and variance Fp(1 – p).{{cite journal |author1=Alkes L. Price |author2=Nick J. Patterson |author3=Robert M. Plenge |author4=Michael E. Weinblatt |author5=Nancy A. Shadick |author6=David Reich |year=2006 |title=Principal components analysis corrects for stratification in genome-wide association studies |journal=Nature Genetics |volume=38 |issue=8 |pages=904–909 |doi=10.1038/ng1847 |url=http://genepath.med.harvard.edu/~reich/Price%20et%20al.pdf |pmid=16862161 |s2cid=8127858 |access-date=2009-02-19 |archive-url=https://web.archive.org/web/20080703180251/http://genepath.med.harvard.edu/~reich/Price%20et%20al.pdf |archive-date=2008-07-03 |url-status=dead }}

The model is due to David Balding and Richard Nichols and is widely used in the forensic analysis of DNA profiles and in population models for genetic epidemiology.

References

{{reflist}}

{{Population genetics}}

{{ProbDistributions|continuous-bounded}}

{{DEFAULTSORT:Balding-Nichols model}}

Category:Statistical genetics

Category:Population genetics

Category:Continuous distributions

{{genetics-stub}}