Barth–Nieto quintic

In algebraic geometry, the Barth–Nieto quintic is a quintic 3-fold in 4 (or sometimes 5) dimensional projective space studied by {{harvs|txt| last1=Barth | first1=Wolf |author1-link=Wolf Barth| last2=Nieto | first2=Isidro|year= 1994}} that is the Hessian of the Segre cubic.

Definition

The Barth–Nieto quintic is the closure of the set of points (x0:x1:x2:x3:x4:x5) of P5 satisfying the equations

:\displaystyle x_0+x_1+x_2+x_3+x_4+x_5= 0

:\displaystyle x_0^{-1}+x_1^{-1}+x_2^{-1}+x_3^{-1}+x_4^{-1}+x_5^{-1} = 0.

Properties

The Barth–Nieto quintic is not rational, but has a smooth model that is a modular Calabi–Yau manifold with Kodaira dimension zero. Furthermore, it is birationally equivalent to a compactification of the Siegel modular variety A1,3(2).{{cite book|title= Higher dimensional birational geometry (Kyoto, 1997)|contribution=The geometry of Siegel modular varieties |last1=Hulek |first1=Klaus |author1-link=Klaus Hulek|last2=Sankaran |first2=Gregory K. |series=Advanced Studies in Pure Mathematics |publisher=Math. Soc. Japan| location=Tokyo|volume=35 |year=2002 |pages=89–156|mr=1929793|doi=10.2969/aspm/03510089|isbn=978-4-931469-85-3 }}

References

{{Reflist}}

  • {{Citation | last1=Barth | first1=Wolf |author1-link=Wolf Barth| last2=Nieto | first2=Isidro | title=Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines | mr=1257320 | year=1994 | journal=Journal of Algebraic Geometry | issn=1056-3911 | volume=3 | issue=2 | pages=173–222}}

{{DEFAULTSORT:Barth-Nieto quintic}}

Category:3-folds

{{algebraic-geometry-stub}}