Baskakov operator

In functional analysis, a branch of mathematics, the Baskakov operators are generalizations of Bernstein polynomials, Szász–Mirakyan operators, and Lupas operators. They are defined by

:[\mathcal{L}_n(f)](x) = \sum_{k=0}^\infty {(-1)^k \frac{x^k}{k!} \phi_n^{(k)}(x) f\left(\frac{k}{n}\right)}

where x\in[0,b)\subset\mathbb{R} (b can be \infty), n\in\mathbb{N}, and (\phi_n)_{n\in\mathbb{N}} is a sequence of functions defined on [0,b] that have the following properties for all n,k\in\mathbb{N}:

  1. \phi_n\in\mathcal{C}^\infty[0,b]. Alternatively, \phi_n has a Taylor series on [0,b).
  2. \phi_n(0) = 1
  3. \phi_n is completely monotone, i.e. (-1)^k\phi_n^{(k)}\geq 0.
  4. There is an integer c such that \phi_n^{(k+1)} = -n\phi_{n+c}^{(k)} whenever n>\max\{0,-c\}

They are named after V. A. Baskakov, who studied their convergence to bounded, continuous functions.{{SpringerEOM|last=Agrawal|first=P. N.|editor=Michiel Hazewinkel|year=2001|title=Baskakov operators|isbn=1-4020-0609-8}}

Basic results

The Baskakov operators are linear and positive.{{SpringerEOM|last=Agrawal|first=P. N.|author2=T. A. K. Sinha|editor=Michiel Hazewinkel|year=2001|title=Bernstein–Baskakov–Kantorovich operator|isbn=1-4020-0609-8}}

References

  • {{cite journal| last=Baskakov | first=V. A. | year=1957 | script-title=ru:Пример последовательности линейных положительных операторов в пространстве непрерывных функций |trans-title=An example of a sequence of linear positive operators in the space of continuous functions | journal=Doklady Akademii Nauk SSSR | language=Russian | volume=113 | pages=249–251}}

=Footnotes=

{{mathanalysis-stub}}

Category:Approximation theory