Basu's theorem
{{Short description|Theorem in statistics}}
In statistics, Basu's theorem states that any boundedly complete and sufficient statistic is independent of any ancillary statistic. This is a 1955 result of Debabrata Basu.Basu (1955)
It is often used in statistics as a tool to prove independence of two statistics, by first demonstrating one is complete sufficient and the other is ancillary, then appealing to the theorem.{{citation|title=Sequential Estimation|volume=904|series=Wiley Series in Probability and Statistics|first1=Malay|last1=Ghosh|first2=Nitis|last2=Mukhopadhyay|first3=Pranab Kumar|last3=Sen|publisher=John Wiley & Sons|year=2011|isbn=9781118165911|page=80|url=https://books.google.com/books?id=_5Xqo02nzO0C&pg=PA80|quote=The following theorem, due to Basu ... helps us in proving independence between certain types of statistics, without actually deriving the joint and marginal distributions of the statistics involved. This is a very powerful tool and it is often used ...}} An example of this is to show that the sample mean and sample variance of a normal distribution are independent statistics, which is done in the Example section below. This property (independence of sample mean and sample variance) characterizes normal distributions.
Statement
Let be a family of distributions on a measurable space and a statistic maps from to some measurable space . If is a boundedly complete sufficient statistic for , and is ancillary to , then conditional on , is independent of . That is, .
= Proof =
Let and be the marginal distributions of and respectively.
Denote by the preimage of a set under the map . For any measurable set we have
:
The distribution does not depend on because is ancillary. Likewise, does not depend on because is sufficient. Therefore
:
Note the integrand (the function inside the integral) is a function of and not . Therefore, since is boundedly complete the function
:
is zero for almost all values of and thus
:
for almost all . Therefore, is independent of .
Example
=Independence of sample mean and sample variance of a normal distribution=
Let X1, X2, ..., Xn be independent, identically distributed normal random variables with mean μ and variance σ2.
Then with respect to the parameter μ, one can show that
:
the sample mean, is a complete and sufficient statistic – it is all the information one can derive to estimate μ, and no more – and
:
the sample variance, is an ancillary statistic – its distribution does not depend on μ.
Therefore, from Basu's theorem it follows that these statistics are independent conditional on , conditional on .
This independence result can also be proven by Cochran's theorem.
Further, this property (that the sample mean and sample variance of the normal distribution are independent) characterizes the normal distribution – no other distribution has this property.{{cite journal
|doi=10.2307/2983669
|first=R.C. |last=Geary |authorlink=Roy C. Geary
|year=1936
|title=The Distribution of "Student's" Ratio for Non-Normal Samples
|journal=Supplement to the Journal of the Royal Statistical Society
|volume=3 |issue=2 |pages=178–184
|jfm=63.1090.03
|jstor=2983669
}}
Notes
{{Reflist}}
{{More footnotes|date=December 2009}}
References
- {{cite journal
|last=Basu |first=D. |authorlink=Debabrata Basu
|title=On Statistics Independent of a Complete Sufficient Statistic
|journal= Sankhyā
|volume=15 |issue=4 |year=1955 |pages=377–380
|mr=74745
|zbl=0068.13401
|jstor=25048259
}}
- Mukhopadhyay, Nitis (2000). Probability and Statistical Inference. Statistics: A Series of Textbooks and Monographs. 162. Florida: CRC Press USA. {{ISBN|0-8247-0379-0}}.
- {{cite journal |doi=10.2307/2685927 |last=Boos |first=Dennis D.|author2=Oliver, Jacqueline M. Hughes |date=Aug 1998 |title=Applications of Basu's Theorem |journal=The American Statistician |volume=52 |issue=3 |pages=218–221 |mr=1650407 |jstor=2685927|url=http://www.lib.ncsu.edu/resolver/1840.4/229 }}
- {{cite journal|authorlink=Malay Ghosh|title=Basu's Theorem with Applications: A Personalistic Review|
first=Malay|last=Ghosh | journal=Sankhyā: The Indian Journal of Statistics, Series A|volume=64|number=3|date=October 2002|pages=509–531 | mr=1985397 |jstor=25051412}}
{{Statistics|state=collapsed}}
Category:Theorems in statistics