Bender–Dunne polynomials

In mathematics, Bender–Dunne polynomials are a two-parameter family of sequences of orthogonal polynomials studied by Carl M. Bender and Gerald V. Dunne.{{cite journal |last1=Bender |first1=Carl M. |last2=Dunne |first2=Gerald V. |title=Polynomials and operator orderings |doi=10.1063/1.527869 |mr=955168 |year=1988 |journal=Journal of Mathematical Physics |issn=0022-2488 |volume=29 |issue=8 |pages=1727–1731| bibcode=1988JMP....29.1727B}}{{cite journal |last1=Bender |first1=Carl M. |last2=Dunne |first2=Gerald V. |title=Quasi-exactly solvable systems and orthogonal polynomials |doi=10.1063/1.531373 |mr=1370155 |year=1996 |journal=Journal of Mathematical Physics |issn=0022-2488 |volume=37 |issue=1 |pages=6–11| arxiv=hep-th/9511138 |bibcode=1996JMP....37....6B |s2cid=28967621}} They may be defined by the recursion:

: P_0(x) = 1,

: P_{1}(x) = x ,

and for n > 1:

: P_n(x) = x P_{n-1}(x) + 16 (n-1) (n-J-1) (n + 2 s -2) P_{n-2}(x)

where J and s are arbitrary parameters.

References

{{reflist}}

Category:Orthogonal polynomials

{{polynomial-stub}}