Beta-dual space

In functional analysis and related areas of mathematics, the beta-dual or {{math|β}}-dual is a certain linear subspace of the algebraic dual of a sequence space.

Definition

Given a sequence space {{mvar|X}}, the {{math|β}}-dual of {{mvar|X}} is defined as

:X^{\beta}:= \left \{ x \in\mathbb{K}^\mathbb{N}\ : \ \sum_{i=1}^{\infty} x_i y_i\text{ converges }\quad \forall y \in X \right \}.

Here, \mathbb{K}\in\{\mathbb{R},\mathbb{C}\} so that \mathbb{K} denotes either the real or complex scalar field.

If {{mvar|X}} is an FK-space then each {{mvar|y}} in {{math|Xβ}} defines a continuous linear form on {{mvar|X}}

:f_y(x) := \sum_{i=1}^{\infty} x_i y_i \qquad x \in X.

Examples

  • c_0^\beta = \ell^1
  • (\ell^1)^\beta = \ell^\infty
  • \omega^\beta = \{0\}

Properties

The beta-dual of an FK-space {{mvar|E}} is a linear subspace of the continuous dual of {{mvar|E}}. If {{mvar|E}} is an FK-AK space then the beta dual is linear isomorphic to the continuous dual.

{{mathanalysis-stub}}

Category:Functional analysis