Beta wavelet

Continuous wavelets of compact support alpha can be built,{{Cite journal|title=Compactly Supported One-cyclic Wavelets Derived from Beta Distributions|journal=Journal of Communication and Information Systems|url=https://www.researchgate.net/publication/255019827|last1=de Oliveira|first1=Hélio Magalhães|volume=20|pages=27–33|last2=Schmidt|first2=Giovanna Angelis|issue=3|year=2005|doi=10.14209/jcis.2005.17 |doi-access=free|arxiv=1502.02166}} which are related to the beta distribution. The process is derived from probability distributions using blur derivative. These new wavelets have just one cycle, so they are termed unicycle wavelets. They can be viewed as a soft variety of Haar wavelets whose shape is fine-tuned by two parameters \alpha and \beta. Closed-form expressions for beta wavelets and scale functions as well as their spectra are derived. Their importance is due to the Central Limit Theorem by Gnedenko and Kolmogorov applied for compactly supported signals.{{Cite book|title=Limit Distributions for Sums of Independent Random Variables|last1=Gnedenko|first1=Boris Vladimirovich|publisher=Addison-Wesley|year=1954|location=Reading, Ma|last2=Kolmogorov|first2=Andrey}}

Beta distribution

The beta distribution is a continuous probability distribution defined over the interval 0\leq t\leq 1. It is characterised by a couple of parameters, namely \alpha and \beta according to:

P(t)=\frac{1}{B(\alpha ,\beta )}t^{\alpha -1}\cdot (1-t)^{\beta -1},\quad 1\leq \alpha ,\beta \leq +\infty .

The normalising factor is B(\alpha ,\beta )=\frac{\Gamma (\alpha )\cdot \Gamma (\beta )}{\Gamma (\alpha +\beta )},

where \Gamma (\cdot ) is the generalised factorial function of Euler and B(\cdot ,\cdot ) is the Beta function.{{Cite book|title=Handbook of Mathematical Functions|editor-last=Abramowitz|editor-first=Milton|publisher=Dover|year=1968|isbn=0-486-61272-4|location=New York|pages=253–294|editor-last2=Stegun|editor-first2=Irene|last=Davis|first=Philip J.|chapter=Gamma Function and Related Functions|chapter-url=http://people.math.sfu.ca/~cbm/aands/page_253.htm|editor-link1=Milton Abramowitz|editor-link2=Irene Stegun|author-link=Philip J. Davis}}

Gnedenko-Kolmogorov central limit theorem revisited

Let p_{i}(t) be a probability density of the random variable t_{i}, i=1,2,3..N i.e.

p_{i}(t)\ge 0, (\forall t) and \int_{-\infty }^{+\infty }p_{i}(t)dt=1.

Suppose that all variables are independent.

The mean and the variance of a given random variable t_{i} are, respectively

m_{i}=\int_{-\infty }^{+\infty }\tau \cdot p_{i}(\tau )d\tau , \sigma _{i}^{2}=\int_{-\infty }^{+\infty }(\tau -m_{i})^{2}\cdot p_{i}(\tau )d\tau .

The mean and variance of t are therefore m=\sum_{i=1}^{N}m_{i} and \sigma^2 =\sum_{i=1}^{N}\sigma _{i}^{2}.

The density p(t) of the random variable corresponding to the sum t=\sum_{i=1}^{N}t_{i} is given by the

Central Limit Theorem for distributions of compact support (Gnedenko and Kolmogorov).

Let \{p_{i}(t)\} be distributions such that Supp\{(p_{i}(t))\}=(a_{i},b_{i})(\forall i).

Let a=\sum_{i=1}^{N}a_{i}<+\infty , and b=\sum_{i=1}^{N}b_{i}<+\infty.

Without loss of generality assume that a=0 and b=1.

The random variable t holds, as N\rightarrow \infty ,

p(t)\approx \begin{cases} {k \cdot t^{\alpha }(1-t)^{\beta}}, \\otherwise \end{cases}

where \alpha =\frac{m(m-m^{2}-\sigma ^{2})}{\sigma ^{2}}, and \beta =\frac{(1-m)(\alpha +1)}{m}.

Beta wavelets

Since P(\cdot |\alpha ,\beta ) is unimodal, the wavelet generated by

\psi _{beta}(t|\alpha ,\beta )=(-1)\frac{dP(t|\alpha ,\beta )}{dt}

has only one-cycle (a negative half-cycle and a positive half-cycle).

The main features of beta wavelets of parameters \alpha and \beta are:

Supp(\psi )=[ -\sqrt{\frac{\alpha}{\beta}}\sqrt{\alpha + \beta +1},\sqrt{ \frac{\beta }{\alpha }} \sqrt{\alpha +\beta +1}]=[a,b].

lengthSupp(\psi )=T(\alpha ,\beta )=(\alpha +\beta )\sqrt{\frac{\alpha +\beta +1}{\alpha \beta }}.

The parameter R=b/|a| =\beta / \alpha is referred to as “cyclic balance”, and is defined as the ratio between the lengths of the causal and non-causal piece of the wavelet. The instant of transition t_{zerocross} from the first to the second half cycle is given by

t_{zerocross}=\frac{(\alpha -\beta )}{(\alpha +\beta -2)}\sqrt{\frac{\alpha +\beta +1}{\alpha \beta }}.

The (unimodal) scale function associated with the wavelets is given by

\phi _{beta}(t|\alpha ,\beta )=\frac{1}{B(\alpha ,\beta )T^{\alpha +\beta -1}}\cdot (t-a)^{\alpha -1}\cdot (b-t)^{\beta -1}, a\leq t\leq b .

A closed-form expression for first-order beta wavelets can easily be derived. Within their support,

\psi_{beta}(t|\alpha ,\beta ) =\frac{-1}{B(\alpha ,\beta )T^{\alpha +\beta -1}} \cdot [\frac{\alpha -1}{t-a}-\frac{\beta -1}{b-t}] \cdot(t-a)^{\alpha -1} \cdot(b-t)^{\beta -1}

Image:Beta scale and wavelet.jpg

Beta wavelet spectrum

The beta wavelet spectrum can be derived in terms of the Kummer hypergeometric function.{{Cite book|title=Handbook of Mathematical Functions|last=Slater|first=Lucy Joan|publisher=Dover|year=1968|isbn=0-486-61272-4|location=New York|pages=503–536|chapter-url=http://people.math.sfu.ca/~cbm/aands/page_503.htm|editor-last=Abramowitz|editor-first=Milton|editor-last2=Stegun|editor-first2=Irene|chapter=Confluent Hypergeometric Function|editor-link1=Milton Abramowitz|editor-link2=Irene Stegun|author-link=Lucy Joan Slater}}

Let \psi _{beta}(t|\alpha ,\beta )\leftrightarrow \Psi _{BETA}(\omega |\alpha ,\beta ) denote the Fourier transform pair associated with the wavelet.

This spectrum is also denoted by \Psi _{BETA}(\omega) for short. It can be proved by applying properties of the Fourier transform that

\Psi _{BETA}(\omega ) =-j\omega \cdot M(\alpha ,\alpha +\beta ,-j\omega (\alpha +\beta )\sqrt{\frac{\alpha +\beta +1}{\alpha \beta}})\cdot exp\{(j\omega \sqrt{\frac{\alpha (\alpha +\beta +1)}{\beta }})\}

where M(\alpha ,\alpha +\beta ,j\nu )=\frac{\Gamma (\alpha +\beta )}{\Gamma (\alpha )\cdot \Gamma (\beta )}\cdot \int_{0}^{1}e^{j\nu t}t^{\alpha -1}(1-t)^{\beta -1}dt.

Only symmetrical (\alpha =\beta ) cases have zeroes in the spectrum. A few asymmetric (\alpha \neq \beta ) beta wavelets are shown in Fig. Inquisitively, they are parameter-symmetrical in the sense that they hold |\Psi _{BETA}(\omega |\alpha ,\beta )|=|\Psi _{BETA}(\omega |\beta ,\alpha )|.

Higher derivatives may also generate further beta wavelets. Higher order beta wavelets are defined by

\psi _{beta}(t|\alpha ,\beta )=(-1)^{N}\frac{d^{N}P(t|\alpha ,\beta )}{dt^{N}}.

This is henceforth referred to as an N-order beta wavelet. They exist for order N\leq Min(\alpha ,\beta )-1. After some algebraic handling, their closed-form expression can be found:

\Psi _{beta}(t|\alpha ,\beta ) =\frac{(-1)^{N}}{B(\alpha ,\beta ) \cdot T^{\alpha +\beta -1}} \sum_{n=0}^{N}sgn(2n-N)\cdot \frac{\Gamma (\alpha )}{\Gamma (\alpha -(N-n))}(t-a)^{\alpha -1-(N-n)} \cdot \frac{\Gamma (\beta )}{\Gamma (\beta -n)}(b-t)^{\beta -1-n}.

Image:Fig1a.jpg

Image:Fig1b.jpg

Application

Wavelet theory is applicable to several subjects. All wavelet transforms may be considered forms of time-frequency representation for continuous-time (analog) signals and so are related to harmonic analysis. Almost all practically useful discrete wavelet transforms use discrete-time filter banks. Similarly, Beta wavelet{{Cite journal|title=Beta wavelets. Synthesis and application to lossy image compression|journal=Advances in Engineering Software|url=https://www.researchgate.net/publication/220291306|last1=Ben Amar|first1=Chokri|volume=36|pages=459–474|last2=Zaied|first2=Mourad|publisher=Elsevier|issue=7|year=2005|last3=Alimi|first3=Adel M.|doi= 10.1016/j.advengsoft.2005.01.013}} and its derivative are utilized in several real-time engineering applications such as image compression, bio-medical signal compression,{{Cite journal|title=Electrocardiogram Signal compression Using Beta Wavelets|journal=Journal of Mathematical Modelling and Algorithms|url=https://www.researchgate.net/publication/257581974|last1=Kumar|first1=Ranjeet|volume=11|last2=Kumar|first2=Anil|publisher=Springer Verlag|issue=3|doi=10.1007/s10852-012-9181-9|year=2012|last3=Pandey|first3=Rajesh K.|pages=235–248|s2cid=4667379}}{{Cite journal|title=Beta wavelet based ECG signal compression using lossless encoding with modified thresholding|journal=Computers & Electrical Engineering|url=https://www.researchgate.net/publication/256918193|last1=Kumar|first1=Ranjeet|volume=39|pages=130–140|last2=Kumar|first2=Anil|publisher=Elsevier|issue=1|doi=10.1016/j.compeleceng.2012.04.008|year=2013|last3=Pandey|first3=Rajesh K.}} image recognition [9]{{Cite book|chapter=Training of the Beta wavelet networks by the frames theory: Application to face recognition|title=2008 First Workshops on Image Processing Theory, Tools and Applications|chapter-url=https://ieeexplore.ieee.org/document/4743756|last1=Zaied|first1=Mourad|last2=Jemai|first2=Olfa|publisher=IEEE|doi=10.1109/IPTA.2008.4743756|year=2008|issn=2154-5111|eissn=2154-512X|last3=Ben Amar|first3=Chokri|pages=1–6|isbn=978-1-4244-3321-6|s2cid=12230926}} etc.

References

{{Reflist}}

Further reading

  • W.B. Davenport, Probability and Random Processes, McGraw-Hill, Kogakusha, Tokyo, 1970.