Biconvex optimization

Biconvex optimization is a generalization of convex optimization where the objective function and the constraint set can be biconvex. There are methods that can find the global optimum of these problems.{{cite journal|last=Gorski|first=Jochen|author2=Pfeuffer, Frank |author3=Klamroth, Kathrin|author3-link= Kathrin Klamroth |title=Biconvex sets and optimization with biconvex functions: a survey and extensions|journal=Mathematical Methods of Operations Research|date=22 June 2007|volume=66|issue=3|pages=373–407|doi=10.1007/s00186-007-0161-1|s2cid=15900842 |url=http://www2.math.uni-wuppertal.de/~klamroth/publications/gopfkl07.pdf}}{{cite book|last=Floudas|first=Christodoulos A.|authorlink1=Christodoulos Floudas|title=Deterministic global optimization : theory, methods, and applications|year=2000|publisher=Kluwer Academic Publ.|location=Dordrecht [u.a.]|isbn=978-0-7923-6014-8|url=https://www.springer.com/mathematics/book/978-0-7923-6014-8}}

A set B \subset X\times Y is called a biconvex set on X\times Y if for every fixed y\in Y , B_y = \{x \in X: (x,y) \in B\} is a convex set in X and for every fixed x\in X , B_x = \{y \in Y: (x,y) \in B\} is a convex set in Y .

A function f(x, y): B \to \mathbb{R} is called a biconvex function if fixing x, f_x(y) = f(x, y) is convex over Y and fixing y, f_y(x) = f(x, y) is convex over X .

A common practice for solving a biconvex problem (which does not guarantee global optimality of the solution) is alternatively updating x, y by fixing one of them and solving the corresponding convex optimization problem.

The generalization to functions of more than two arguments

is called a block multi-convex function.

A function

f(x_1,\ldots,x_K) \to \mathbb{R}

is block multi-convex

iff it is convex with respect to each of the individual arguments

while holding all others fixed.{{cite journal

|last=Chen

|first=Caihua

|title="The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent"

|journal= Mathematical Programming

|volume=155

|pages=57–59

|doi=10.1007/s10107-014-0826-5

|year=2016

|issue=1–2

|s2cid=5646309

}}

References

{{reflist}}

{{Optimization algorithms}}

Category:Convex optimization

Category:Generalized convexity

{{mathapplied-stub}}