Bicrossed product of Hopf algebra

{{short description|Concept in Hopf algebra}}

{{Orphan|date=March 2024}}

In quantum group and Hopf algebra, the bicrossed product is a process to create new Hopf algebras from the given ones. It's motivated by the Zappa–Szép product of groups. It was first discussed by M. Takeuchi in 1981,{{citation|last=Takeuchi|first=M.|title=Matched pairs of groups and bismash products of Hopf algebras|journal=Comm. Algebra|volume=9|issue=8|pages=841–882|year=1981|doi=10.1080/00927878108822621}} and now a general tool for construction of Drinfeld quantum double.{{Citation|last1=Kassel|first1=Christian|title=Quantum groups|url=https://archive.org/details/quantumgroups0000kass|volume=155|year=1995|series=Graduate Texts in Mathematics|location=Berlin, New York|publisher=Springer-Verlag|doi=10.1007/978-1-4612-0783-2|isbn=9780387943701|url-access=registration}}{{Citation|last1=Majid|first1=Shahn|title=Foundations of quantum group theory|year=1995|publisher=Cambridge University Press|doi=10.1017/CBO9780511613104|isbn=9780511613104}}

Bicrossed product

Consider two bialgebras A and X, if there exist linear maps \alpha:A\otimes X \to X turning X a module coalgebra over A, and \beta: A\otimes X\to A turning A into a right module coalgebra over X. We call them a pair of matched bialgebras, if we set \alpha(a\otimes x)=a\cdot x and \beta(a\otimes x)=a^x, the following conditions are satisfied

a\cdot (xy)=\sum_{(a),(x)}(a_{(1)} \cdot x_{(1)}) (a_{(2)}^{x_{(2)}} \cdot y)

a\cdot 1_X=\varepsilon_A(a)1_X

(ab)^x=\sum_{(b),(x)}a^{b_{(1)} \cdot x_{(1)}} b_{(2)}^{x_{(2)}}

1_A^x=\varepsilon_X(x)1_A

\sum_{(a),(x)}a_{(1)}^{x_{(1)}} \otimes a_{(2)}\cdot x_{(2)}=\sum_{(a),(x)}a_{(2)}^{x_{(2)}}\otimes a_{(1)}\cdot x_{(1)}

for all a,b\in A and x,y\in X. Here the Sweedler's notation of coproduct of Hopf algebra is used.

For matched pair of Hopf algebras A and X, there exists a unique Hopf algebra over X\otimes A, the resulting Hopf algebra is called bicrossed product of A and X and denoted by X \bowtie A,

  • The unit is given by (1_X\otimes 1_A);
  • The multiplication is given by (x\otimes a)(y\otimes b)=\sum_{(a),(y)}x(a_{(1)}\cdot y_{(1)}) \otimes a_{(2)}^{y_{(2)}} b;
  • The counit is \varepsilon(x\otimes a)=\varepsilon_X(x)\varepsilon_A(a);
  • The coproduct is \Delta(x\otimes a)=\sum_{(x),(a)} (x_{(1)}\otimes a_{(1)}) \otimes (x_{(2)}\otimes a_{(2)});
  • The antipode is S(x\otimes a)=\sum_{(x),(a)}S(a_{(2)})\cdot S(x_{(2)}) \otimes S(a_{(1)})^{S(x_{(1)})}.

Drinfeld quantum double

For a given Hopf algebra H, its dual space H^* has a canonical Hopf algebra structure and H and H^{*cop} are matched pairs. In this case, the bicrossed product of them is called Drinfeld quantum double D(H)=H^{*cop}\bowtie H.

References

{{reflist}}

{{DEFAULTSORT:bicrossed product}}

Category:Hopf algebras