Biodiversity hotspot

{{Short description|Biodiverse region under threat}}

File:Biodiversity Hotspots Map.jpg

A biodiversity hotspot is a biogeographic region with significant levels of biodiversity that is threatened by human habitation.{{cite web|url=http://www.bsienvis.nic.in/Database/Biodiversity-Hotspots-in-India_20500.aspx|title=Biodiversity Hotspots in India|website=www.bsienvis.nic.in}}{{cite web|url=http://www.conservation.org/How/Pages/Hotspots.aspx|title=Why Hotspots Matter|website=Conservation International}} Norman Myers wrote about the concept in two articles in The Environmentalist in 1988 {{cite journal|last=Myers|first=N.|journal=Environmentalist|volume=8|pages=187–208|year=1988|title=Threatened biotas: "Hot spots" in tropical forests|issue=3|doi=10.1007/BF02240252|pmid=12322582|bibcode=1988ThEnv...8..187M |s2cid=2370659}} and 1990,Myers, N. The Environmentalist 10 243-256 (1990) after which the concept was revised following thorough analysis by Myers and others into "Hotspots: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions"Russell A. Mittermeier, Norman Myers and Cristina Goettsch Mittermeier, Hotspots: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions, Conservation International, 2000 {{ISBN|978-968-6397-58-1}} and a paper published in the journal Nature, both in 2000.

To qualify as a biodiversity hotspot on Myers' 2000 edition of the hotspot map, a region must meet two strict criteria: it must contain at least 1,500 species of vascular plants (more than 0.5% of the world's total) as endemics, and it has to have lost at least 70% of its primary vegetation.{{cite journal|last1=Myers|first1=Norman|last2=Mittermeier|first2=Russell A.|last3=Mittermeier|first3=Cristina G.|last4=da Fonseca|first4=Gustavo A. B.|last5=Kent|first5=Jennifer|journal=Nature|volume=403|issue=6772|year=2000|pages=853–858|title=Biodiversity hotspots for conservation priorities|url=https://www.nature.com/nature/journal/v403/n6772/pdf/403853a0.pdf|issn=0028-0836|doi=10.1038/35002501|pmid=10706275|bibcode=2000Natur.403..853M|s2cid=4414279}} Globally, 36 zones qualify under this definition.{{cite web|title=Biodiversity hotspots defined|url=https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined|website=Critical Ecosystem Partnership Fund|publisher=Conservation International|access-date=10 August 2020}} These sites support nearly 60% of the world's plant, bird, mammal, reptile, and amphibian species, with a high share of those species as endemics. Some of these hotspots support up to 15,000 endemic plant species, and some have lost up to 95% of their natural habitat.

Biodiversity hotspots host their diverse ecosystems on just 2.4% of the planet's surface. Ten hotspots were originally identified by Myer; the current 36 used to cover more than 15.7% of all the land but have lost around 85% of their area.{{cite web|url=https://www.e-education.psu.edu/geog30/book/export/html/393|title=Biodiversity Hotspots|website=www.e-education.psu.edu}} This loss of habitat is why approximately 60% of the world's terrestrial life lives on only 2.4% of the land surface area. Caribbean Islands like Haiti and Jamaica are facing serious pressures on the populations of endemic plants and vertebrates as a result of rapid deforestation. Other areas include the Tropical Andes, Philippines, Mesoamerica, and Sundaland, which, under the current levels at which deforestation is occurring, will likely lose most of their plant and vertebrate species.{{Cite journal|last1=Brooks|first1=Thomas M.|last2=Mittermeier|first2=Russell A.|last3=Mittermeier|first3=Cristina G.|last4=da Fonseca|first4=Gustavo A. B.|last5=Rylands|first5=Anthony B.|last6=Konstant|first6=William R.|last7=Flick|first7=Penny|last8=Pilgrim|first8=John|last9=Oldfield|first9=Sara|last10=Magin|first10=Georgina|last11=Hilton-Taylor|first11=Craig|date=August 2002|title=Habitat Loss and Extinction in the Hotspots of Biodiversity|url=https://doi.org/10.1046/j.1523-1739.2002.00530.x|journal=Conservation Biology|volume=16|issue=4|pages=909–923|doi=10.1046/j.1523-1739.2002.00530.x|bibcode=2002ConBi..16..909B |s2cid=44009934|issn=0888-8892|url-access=subscription}}

Hotspot conservation initiatives

Only a small percentage of the total land area within biodiversity hotspots is now protected. Several international organizations are working to conserve biodiversity hotspots.

  • Critical Ecosystem Partnership Fund (CEPF) is a global program that provides funding and technical assistance to nongovernmental organizations in order to protect the Earth's richest regions of plant and animal diversity, including biodiversity hotspots, high-biodiversity wilderness areas and important marine regions.
  • The World Wide Fund for Nature has devised a system called the "Global 200 Ecoregions", the aim of which is to select priority ecoregions for conservation from fourteen terrestrial, three freshwater, and four marine habitat types. They are chosen for species richness, endemism, taxonomic uniqueness, unusual ecological or evolutionary phenomena, and global rarity. All biodiversity hotspots contain at least one Global 200 Ecoregion.
  • Birdlife International has identified 218 "Endemic Bird Areas" (EBAs) each of which holds two or more bird species found nowhere else. Birdlife International has identified more than 11,000 Important Bird Areas[http://www.birdlife.org/datazone/sites/index.html] {{webarchive|url=https://web.archive.org/web/20070808183125/http://www.birdlife.org/datazone/sites/index.html|date=August 8, 2007}} all over the world.
  • Plant life International coordinates programs aiming to identify and manage Important Plant Areas.
  • Alliance for Zero Extinction is an initiative of scientific organizations and conservation groups who co-operate to focus on the most threatened endemic species of the world. They have identified 595 sites, including many Birdlife's Important Bird Areas.
  • The National Geographic Society has prepared a world map{{cite web|url=http://www.biodiversityhotspots.org/xp/hotspots/Documents/cihotspotmap.pdf|title=Conservation International|publisher=The Biodiversity Hotspots|date=2010-10-07|access-date=2012-06-22|url-status=dead|archive-url=https://web.archive.org/web/20120327075212/http://www.biodiversityhotspots.org/xp/hotspots/Documents/cihotspotmap.pdf|archive-date=2012-03-27}} of the hotspots and ArcView shapefile and metadata for the Biodiversity Hotspots{{cite web|url=http://www.biodiversityhotspots.org/xp/hotspots/Documents/hotspots_revisited_2004.zip|title=Conservation International|publisher=The Biodiversity Hotspots|date=2010-10-07|access-date=2012-06-22|url-status=dead|archive-url=https://web.archive.org/web/20120320054336/http://www.biodiversityhotspots.org/xp/hotspots/Documents/hotspots_revisited_2004.zip|archive-date=2012-03-20}} including details of the individual endangered fauna in each hotspot, which is available from Conservation International.{{cite web|url=http://www.biodiversityhotspots.org/xp/Hotspots/resources/pages/maps.aspx|title=Resources|publisher=Biodiversityhotspots.org|date=2010-10-07|access-date=2012-06-22|url-status=dead|archive-url=https://web.archive.org/web/20120324024634/http://www.biodiversityhotspots.org/xp/Hotspots/resources/pages/maps.aspx|archive-date=2012-03-24}}
  • The Compensatory Afforestation Management and Planning Authority (CAMPA) seeks to control the destruction of forests in India.

Distribution by region

File:Biodiversity Hotspots.svg|access-date=3 August 2022}}]]

Most biodiversity exists within the tropics; likewise, most hotspots are tropical.{{Cite journal|last1=Harvey|first1=Michael G.|last2=Bravo|first2=Gustavo A.|last3=Claramunt|first3=Santiago|last4=Cuervo|first4=Andrés M.|last5=Derryberry|first5=Graham E.|last6=Battilana|first6=Jaqueline|last7=Seeholzer|first7=Glenn F.|last8=McKay|first8=Jessica Shearer|last9=O’Meara|first9=Brian C.|last10=Faircloth|first10=Brant C.|last11=Edwards|first11=Scott V.|last12=Pérez-Emán|first12=Jorge|last13=Moyle|first13=Robert G.|last14=Sheldon|first14=Frederick H.|last15=Aleixo|first15=Alexandre|date=2020-12-11|title=The evolution of a tropical biodiversity hotspot|url=https://www.science.org/doi/10.1126/science.aaz6970|journal=Science|language=en|volume=370|issue=6522|pages=1343–1348|doi=10.1126/science.aaz6970|pmid=33303617 |bibcode=2020Sci...370.1343H |hdl=10138/329703 |s2cid=228084618 |issn=0036-8075|hdl-access=free}} Of the 36 biodiversity hotspots, 15 are classified as old, climatically-buffered, infertile landscapes (OCBILs).{{Cite web |title=OCBIL theory examined: reassessing evolution, ecology and conservation in the world's ancient, climatically buffered and infertile landscapes |url=https://academic.oup.com/biolinnean/article/133/2/266/6118895 |access-date=2023-03-23 |website=academic.oup.com}} These areas have been historically isolated from interactions with other climate zones, but recent human interaction and encroachment have put these historically safe hotspots at risk. OCBILs have mainly been threatened by the relocation of indigenous groups and military actions, as the infertile ground has previously dissuaded human populations.{{Cite journal|last1=Hopper|first1=Stephen D.|last2=Silveira|first2=Fernando A. O.|last3=Fiedler|first3=Peggy L.|date=2016-06-01|title=Biodiversity hotspots and Ocbil theory|url=https://doi.org/10.1007/s11104-015-2764-2|journal=Plant and Soil|language=en|volume=403|issue=1|pages=167–216|doi=10.1007/s11104-015-2764-2|bibcode=2016PlSoi.403..167H |s2cid=254948226 |issn=1573-5036|url-access=subscription}} The conservation of OCBILs within biodiversity hotspots has started to garner attention because current theories believe these sites provide not only high levels of biodiversity, but they have relatively stable lineages and the potential for high levels of speciation in the future. Because these sites are relatively stable, they can be classified as refugia.{{Cite journal|last=Hopper|first=Stephen D.|date=2009-09-01|title=OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes|url=https://doi.org/10.1007/s11104-009-0068-0|journal=Plant and Soil|language=en|volume=322|issue=1|pages=49–86|doi=10.1007/s11104-009-0068-0|bibcode=2009PlSoi.322...49H |s2cid=28155038 |issn=1573-5036|url-access=subscription}}

North and Central America

  • California Floristic Province (8)
  • Madrean pine–oak woodlands (26)
  • Mesoamerica (2)
  • North American Coastal Plain (36){{cite web|title=North American Coastal Plain|publisher=Critical Ecosystem Partnership Fund|url=https://www.cepf.net/our-work/biodiversity-hotspots/north-american-coastal-plain|access-date=7 February 2019}}{{cite journal|first1=Reed F.|last1=Noss|first2=William J.|last2=Platt|first3=Bruce A.|last3=Sorrie|first4=Alan S.|last4=Weakley|first5=D. Bruce|last5=Means|first6=Jennifer|last6=Costanza|first7=Robert K.|last7=Peet|title=How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain|journal=Diversity and Distributions|year=2015|volume=21|issue=2|pages=236–244|doi=10.1111/ddi.12278|bibcode=2015DivDi..21..236N |url=http://repository.lib.ncsu.edu/bitstream/1840.2/2642/1/Noss%20et%20al%202014%20Coastal%20Plain%20hotspot%20D%26D.pdf|doi-access=free}}

The Caribbean

South America

Europe

Africa

Central Asia

South Asia

Southeast Asia and Asia-Pacific

East Asia

West Asia

Criticism

The high profile of the biodiversity hotspots approach has resulted in some criticism. Papers such as Kareiva & Marvier (2003){{cite journal|last1=Kareiva|first1=Peter|last2=Marvier|first2=Michelle|title=Conserving Biodiversity Coldspots: Recent calls to direct conservation funding to the world's biodiversity hotspots may be bad investment advice|journal=American Scientist|date=2003|volume=91|issue=4|pages=344–351|doi=10.1511/2003.4.344|jstor=27858246|url=https://www.jstor.org/stable/27858246|access-date=10 May 2022|issn=0003-0996|url-access=subscription}} have pointed out that biodiversity hotspots (and many other priority region sets) do not address the concept of cost,{{cite journal|last1=Possingham|first1=Hugh P.|last2=Wilson|first2=Kerrie A.|title=Turning up the heat on hotspots|journal=Nature|date=August 2005|volume=436|issue=7053|pages=919–920|doi=10.1038/436919a|pmid=16107821|s2cid=4398455|language=en|issn=1476-4687|doi-access=free}} and do not consider phylogenetic diversity.{{cite journal|last1=Daru|first1=Barnabas H.|last2=van der Bank|first2=Michelle|last3=Davies|first3=T. Jonathan|year=2014|title=Spatial incongruence among hotspots and complementary areas of tree diversity in southern Africa|journal=Diversity and Distributions|volume=21|issue=7|pages=769–780|doi=10.1111/ddi.12290|s2cid=18417574|doi-access=free}}

See also

{{div col}}

  • {{annotated link|Biodiversity}}
  • {{annotated link|Conservation biology}}
  • {{annotated link|Crisis ecoregion}}
  • {{annotated link|Ecoregion}}
  • {{annotated link|Global 200}}
  • {{annotated link|Hawaiian honeycreeper conservation}}
  • {{annotated link|High-Biodiversity Wilderness Area}}
  • {{annotated link|Hope spot}}: biodiversity hotspots in the open sea
  • {{annotated link|Key Biodiversity Area}}
  • {{annotated link|Megadiverse countries}}
  • {{annotated link|Protected area}}
  • {{annotated link|Wilderness}}
  • {{annotated link|Type locality hotspots}}

{{div col end}}

References

{{Reflist|30em}}

Further reading

  • [https://archive.today/20080521135926/http://publishing.royalsociety.org/biodiversity-hotspots Dedicated issue of Philosophical Transactions B on Biodiversity Hotspots. Some articles are freely available.]
  • Spyros Sfenthourakis, Anastasios Legakis: Hotspots of endemic terrestrial invertebrates in Southern Greece. Kluwer Academic Publishers, 2001