Biryukov equation
{{short description|Non-linear second-order differential equation}}
{{Multiple issues|
{{context|date=May 2025}}
{{technical|date=May 2025}}
{{COI|date=January 2017}}
}}
File:Sine oscillations.jpg oscillations {{math|1=F = 0.01}}]]
In the study of dynamical systems, the Biryukov equation (or Biryukov oscillator), named after Vadim Biryukov (1946), is a non-linear second-order differential equation used to model damped oscillators.H. P. Gavin, The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems (MATLAB implementation included)
The equation is given by
where {{math|ƒ(y)}} is a piecewise constant function which is positive, except for small {{mvar|y}} as
& f(y) = \begin{cases} -F, & |y|\le Y_0; \\[4pt] F, & |y|>Y_0. \end{cases} \\[6pt]
& F = \text{const.} > 0, \quad Y_0 = \text{const.} > 0.
\end{align}
Eq. (1) is a special case of the Lienard equation; it describes the auto-oscillations.
Solution (1) at separate time intervals when f(y) is constant is given byArrowsmith D. K., Place C. M. Dynamical Systems. Differential equations, maps and chaotic behavior. Chapman & Hall, (1992)
where {{math|exp}} denotes the exponential function. Here
\displaystyle \frac{F}{2}\mp\sqrt{ \left(\frac{F}{2}\right)^2-1}, & |y| \displaystyle -\frac{F}{2}\mp\sqrt{ \left(\frac{F}{2}\right)^2-1} & \text{otherwise.} \end{cases} Expression (2) can be used for real and complex values of {{mvar|s{{sub|k}}}}. The first half-period’s solution at is File:Fig 2 Relaxation oscillations F = 4.png y(t) &= \begin{cases} y_1(t), & 0\le t y_2(t), & \displaystyle T_0\le t< \frac{T}{2}. \end{cases} \\[4pt] y_1(t) &= A_{1,k}\cdot \exp (s_{1,k}t)+A_{2,k}\cdot \exp (s_{2,k}t), \\[2pt] y_2(t) &= A_{3,k}\cdot \exp(s_{3,k}t)+A_{4,k}\cdot \exp (s_{4,k}t). \end{align} The second half-period’s solution is \displaystyle -y_1\left(t-\frac{T}{2}\right), & \displaystyle \frac{T}{2} \le t < \frac{T}{2} + T_0; \\[4pt] \displaystyle -y_2\left(t-\frac{T}{2}\right), & \displaystyle \frac{T}{2} + T_0 \le t < T. \end{cases} The solution contains four constants of integration {{math|A{{sub|1}}, A{{sub|2}}, A{{sub|3}}, A{{sub|4}}}}, the period {{mvar|T}} and the boundary {{math|T{{sub|0}}}} between {{math|y{{sub|1}}(t)}} and {{math|y{{sub|2}}(t)}} needs to be found. A boundary condition is derived from the continuity of {{math|y(t)}} and {{math|dy/dt}}.Pilipenko A. M., and Biryukov V. N. «Investigation of Modern Numerical Analysis Methods of Self-Oscillatory Circuits Efficiency», Journal of Radio Electronics, No 9, (2013). http://jre.cplire.ru/jre/aug13/9/text-engl.html Solution of (1) in the stationary mode thus is obtained by solving a system of algebraic equations as & y_1(0) = -Y_0 & y_1(T_0) = Y_0 \\[6pt] & y_2(T_0) = Y_0 & y_2 \! \left(\tfrac{T}{2}\right) = Y_0 \\[6pt] & \displaystyle \left.\frac{dy_1}{dt}\right|_{T_0} = \left.\frac{dy_2}{dt}\right|_{T_0} \qquad & \displaystyle \left.\frac{dy_1}{dt}\right|_{0} = -\left.\frac{dy_2}{dt}\right|_\frac{T}{2} \end{array} The integration constants are obtained by the Levenberg–Marquardt algorithm. With , Eq. (1) named Van der Pol oscillator. Its solution cannot be expressed by elementary functions in closed form.