Block-stacking problem

{{short description|Problem of stacking blocks so they extend as far as possible past their base}}

File:Block_stacking_problem.svg

In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire {{harv|Johnson|1955}}, also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.

Statement

The block-stacking problem is the following puzzle:

Place N identical rigid rectangular blocks in a stable stack on a table edge in such a way as to maximize the overhang.

{{harvtxt|Paterson|Peres|Thorup|Winkler|2007}} provide a long list of references on this problem going back to mechanics texts from the middle of the 19th century.

Variants

=Single-wide=

The single-wide problem involves having only one block at any given level. In the ideal case of perfectly rectangular blocks, the solution to the single-wide problem is that the maximum overhang is given by \sum_{i=1}^{N}\frac{1}{2i} times the width of a block. This sum is one half of the corresponding partial sum of the harmonic series. Because the harmonic series diverges, the maximal overhang tends to infinity as N increases, meaning that it is possible to achieve any arbitrarily large overhang, with sufficient blocks.

{{Div flex row| justify-content=center}}

class="wikitable" style="white-space:nowrap;float:left;margin:0.5em;width:unset !important;"

! rowspan="2"|N !! colspan="4"|Maximum overhang

colspan="2"|expressed as a fractiondecimalrelative size
style="text-align:right;"|1style="border-right:none;text-align:right;padding-right:0;"|1style="border-left:none;padding-left:0;"|/2{{bartable|0.520}}
style="text-align:right;"|2style="border-right:none;text-align:right;padding-right:0;"|3style="border-left:none;padding-left:0;"|/4{{bartable|0.7520}}
style="text-align:right;"|3style="border-right:none;text-align:right;padding-right:0;"|11style="border-left:none;padding-left:0;"|/12~{{bartable|0.9166720}}
style="text-align:right;"|4style="border-right:none;text-align:right;padding-right:0;"|25style="border-left:none;padding-left:0;"|/24~{{bartable|1.0416720}}
style="text-align:right;"|5style="border-right:none;text-align:right;padding-right:0;"|137style="border-left:none;padding-left:0;"|/120~{{bartable|1.1416720}}
style="text-align:right;"|6style="border-right:none;text-align:right;padding-right:0;"|49style="border-left:none;padding-left:0;"|/40{{bartable|1.22520}}
style="text-align:right;"|7style="border-right:none;text-align:right;padding-right:0;"|363style="border-left:none;padding-left:0;"|/280~{{bartable|1.2964320}}
style="text-align:right;"|8style="border-right:none;text-align:right;padding-right:0;"|761style="border-left:none;padding-left:0;"|/560~{{bartable|1.3589320}}
style="text-align:right;"|9style="border-right:none;text-align:right;padding-right:0;"|7 129style="border-left:none;padding-left:0;"|/5 040~{{bartable|1.4144820}}
style="text-align:right;"|10style="border-right:none;text-align:right;padding-right:0;"|7 381style="border-left:none;padding-left:0;"|/5 040~{{bartable|1.4644820}}

class="wikitable" style="white-space:nowrap;float:left;margin:0.5em;width:unset !important;"

! rowspan="2"|N !! colspan="4"|Maximum overhang

colspan="2"|expressed as a fractiondecimalrelative size
style="text-align:right;"|11style="border-right:none;text-align:right;padding-right:0;"|83 711style="border-left:none;padding-left:0;"|/55 440~{{bartable|1.5099420}}
style="text-align:right;"|12style="border-right:none;text-align:right;padding-right:0;"|86 021style="border-left:none;padding-left:0;"|/55 440~{{bartable|1.5516120}}
style="text-align:right;"|13style="border-right:none;text-align:right;padding-right:0;"|1 145 993style="border-left:none;padding-left:0;"|/720 720~{{bartable|1.5900720}}
style="text-align:right;"|14style="border-right:none;text-align:right;padding-right:0;"|1 171 733style="border-left:none;padding-left:0;"|/720 720~{{bartable|1.6257820}}
style="text-align:right;"|15style="border-right:none;text-align:right;padding-right:0;"|1 195 757style="border-left:none;padding-left:0;"|/720 720~{{bartable|1.6591120}}
style="text-align:right;"|16style="border-right:none;text-align:right;padding-right:0;"|2 436 559style="border-left:none;padding-left:0;"|/1 441 440~{{bartable|1.6903620}}
style="text-align:right;"|17style="border-right:none;text-align:right;padding-right:0;"|42 142 223style="border-left:none;padding-left:0;"|/24 504 480~{{bartable|1.7197820}}
style="text-align:right;"|18style="border-right:none;text-align:right;padding-right:0;"|14 274 301style="border-left:none;padding-left:0;"|/8 168 160~{{bartable|1.7475520}}
style="text-align:right;"|19style="border-right:none;text-align:right;padding-right:0;"|275 295 799style="border-left:none;padding-left:0;"|/155 195 040~{{bartable|1.7738720}}
style="text-align:right;"|20style="border-right:none;text-align:right;padding-right:0;"|55 835 135style="border-left:none;padding-left:0;"|/31 039 008~{{bartable|1.7988720}}

class="wikitable" style="white-space:nowrap;float:left;margin:0.5em; width:unset !important;"

! rowspan="2"|N !! colspan="4"|Maximum overhang

colspan="2"|expressed as a fractiondecimalrelative size
style="text-align:right;"|21style="border-right:none;text-align:right;padding-right:0;"|18 858 053style="border-left:none;padding-left:0;"|/10 346 336~{{bartable|1.8226820}}
style="text-align:right;"|22style="border-right:none;text-align:right;padding-right:0;"|19 093 197style="border-left:none;padding-left:0;"|/10 346 336~{{bartable|1.8454120}}
style="text-align:right;"|23style="border-right:none;text-align:right;padding-right:0;"|444 316 699style="border-left:none;padding-left:0;"|/237 965 728~{{bartable|1.8671520}}
style="text-align:right;"|24style="border-right:none;text-align:right;padding-right:0;"|1 347 822 955style="border-left:none;padding-left:0;"|/713 897 184~{{bartable|1.8879820}}
style="text-align:right;"|25style="border-right:none;text-align:right;padding-right:0;"|34 052 522 467style="border-left:none;padding-left:0;"|/17 847 429 600~{{bartable|1.9079820}}
style="text-align:right;"|26style="border-right:none;text-align:right;padding-right:0;"|34 395 742 267style="border-left:none;padding-left:0;"|/17 847 429 600~{{bartable|1.9272120}}
style="text-align:right;"|27style="border-right:none;text-align:right;padding-right:0;"|312 536 252 003style="border-left:none;padding-left:0;"|/160 626 866 400~{{bartable|1.9457320}}
style="text-align:right;"|28style="border-right:none;text-align:right;padding-right:0;"|315 404 588 903style="border-left:none;padding-left:0;"|/160 626 866 400~{{bartable|1.9635920}}
style="text-align:right;"|29style="border-right:none;text-align:right;padding-right:0;"|9 227 046 511 387style="border-left:none;padding-left:0;"|/4 658 179 125 600~{{bartable|1.9808320}}
style="text-align:right;"|30style="border-right:none;text-align:right;padding-right:0;"|9 304 682 830 147style="border-left:none;padding-left:0;"|/4 658 179 125 600~{{bartable|1.9974920}}

{{clear}}

{{Div flex row end}}

The number of blocks required to reach at least N block-lengths past the edge of the table is 4, 31, 227, 1674, 12367, 91380, ... {{OEIS|A014537}}.{{Cite OEIS|sequencenumber=A014537|name=Number of books required for n book-lengths of overhang in the harmonic book stacking problem.}}

=Multi-wide=

File:Block stacking problem compare 3.svg

Multi-wide stacks using counterbalancing can give larger overhangs than a single width stack. Even for three blocks, stacking two counterbalanced blocks on top of another block can give an overhang of 1, while the overhang in the simple ideal case is at most {{sfrac|11|12}}. As {{harvtxt|Paterson|Peres|Thorup|Winkler|2007}} showed, asymptotically, the maximum overhang that can be achieved by multi-wide stacks is proportional to the cube root of the number of blocks, in contrast to the single-wide case in which the overhang is proportional to the logarithm of the number of blocks. However, it has been shown that in reality this is impossible and the number of blocks that we can move to the right, due to block stress, is not more than a specified number. For example, for a special brick with {{mvar|h}} = {{val|0.20|u=m}}, Young's modulus {{mvar|E}} = {{val|3000|u=MPa}} and density {{mvar|ρ}} = {{val|1.8|e=3|u=kg/m3}} and limiting compressive stress {{val|3|u=MPa}}, the approximate value of {{mvar|N}} will be 853 and the maximum tower height becomes {{val|170|u=m}}.{{Cite journal|url=http://iopscience.iop.org/article/10.1088/0031-9120/42/1/F05|doi = 10.1088/0031-9120/42/1/F05|title = Simplifying modelling can mislead students|year = 2007|last1 = Khoshbin-e-Khoshnazar|first1 = M. R.|journal = Physics Education|volume = 42|pages = 14–15| s2cid=250745206 }}

Proof of solution of single-wide variant

The above formula for the maximum overhang of n blocks, each with length l and mass m, stacked one at a level, can be proven by induction by considering the torques on the blocks about the edge of the table they overhang. The blocks can be modelled as point-masses located at the center of each block, assuming uniform mass-density. In the base case (n=1), the center of mass of the block lies above the table's edge, meaning an overhang of l/2. For k blocks, the center of mass of the k-block system must lie above the table's edge, and the center of mass of the k-1 top blocks must lie above the edge of the first for static equilibrium.{{Cite web |last=Cazelais |first=Gilles |title=Block stacking problem |url=http://wrean.ca/cazelais/block_problem.pdf |archive-url=https://web.archive.org/web/20231204233816/http://wrean.ca/cazelais/block_problem.pdf |archive-date=December 4, 2023}} If the kth block overhangs the (k-1)th by l/2 and the overhang of the first is x,{{Cite web |last=Joanna |date=2022-04-14 |title=The Infinite Block Stacking Problem or the Leaning Tower of Lire |url=https://www.mathscareers.org.uk/the-infinite-block-stacking-problem-or-the-leaning-tower-of-lire/ |access-date=2023-12-04 |website=Maths Careers |language=en-GB}}

(k-1)mgx=(l/2-x)mg

\implies x=l/2k,

where g denotes the gravitational field. If the k-1 top blocks overhang their center of mass by y, then, by assuming the inductive hypothesis, the maximum overhang off the table is

y+\frac{l}{2k}=\sum_{i=1}^k{l/2i} \implies y=\sum_{i=1}^{k-1}{l/2i} .

For k+1 blocks, y denotes how much the k+1-1 top blocks overhang their center of mass (y=\sum_{i=1}^k l/2i), and x=\frac{l}{2(k+1)}. Then, the maximum overhang would be:

\frac{l}{2(k+1)}+\sum_{i=1}^k l/2i=\sum_{i=1}^{k+1} l/2i. File:block_stacking_problem_skintled_4_diamond.svg

Robustness

{{harvtxt|Hall|2005}} discusses this problem, shows that it is robust to nonidealizations such as rounded block corners and finite precision of block placing, and introduces several variants including nonzero friction forces between adjacent blocks.

References

  • {{Cite journal

| first = J. F. | last = Hall

| title = Fun with stacking blocks

| journal = American Journal of Physics

| volume = 73 | issue = 12 | year = 2005 | pages = 1107–1116

| doi = 10.1119/1.2074007

| bibcode = 2005AmJPh..73.1107H}}.

  • {{cite journal

| last = Johnson | first = Paul B.

| bibcode = 1955AmJPh..23..240J

| date = April 1955

| doi = 10.1119/1.1933957

| issue = 4

| journal = American Journal of Physics

| pages = 240

| title = Leaning Tower of Lire

| volume = 23}}

  • {{cite arXiv

| last1 = Paterson | first1 = Mike | author1-link = Mike Paterson

| last2 = Peres | first2 = Yuval | author2-link = Yuval Peres

| last3 = Thorup | first3 = Mikkel | author3-link = Mikkel Thorup

| last4 = Winkler | first4 = Peter | author4-link = Peter Winkler

| last5 = Zwick | first5 = Uri | author5-link = Uri Zwick

| title = Maximum overhang

| year = 2007

| eprint = 0707.0093

| class = math.HO

}}