Block LU decomposition

{{More citations needed|date=June 2025}}

In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.{{cite journal |last1=Gallivan |first1=K. A. |last2=Plemmons |first2=R. J. |last3=Sameh |first3=A. H. |title=Parallel Algorithms for Dense Linear Algebra Computations |journal=SIAM Review |date=1990 |volume=32 |issue=1 |pages=94–95 |url=https://www.jstor.org/stable/2030382 |access-date=24 June 2025 |issn=0036-1445}}

Block LDU decomposition

:

\begin{pmatrix}

A & B \\

C & D

\end{pmatrix}

=

\begin{pmatrix}

I & 0 \\

C A^{-1} & I

\end{pmatrix}

\begin{pmatrix}

A & 0 \\

0 & D-C A^{-1} B

\end{pmatrix}

\begin{pmatrix}

I & A^{-1} B \\

0 & I

\end{pmatrix}

Block Cholesky decomposition

Consider a block matrix:

:

\begin{pmatrix}

A & B \\

C & D

\end{pmatrix}

=

\begin{pmatrix}

I \\

C A^{-1}

\end{pmatrix}

\,A\,

\begin{pmatrix}

I & A^{-1}B

\end{pmatrix}

+

\begin{pmatrix}

0 & 0 \\

0 & D-C A^{-1} B

\end{pmatrix},

where the matrix \begin{matrix}A\end{matrix} is assumed to be non-singular,

\begin{matrix}I\end{matrix} is an identity matrix with proper dimension, and \begin{matrix}0\end{matrix} is a matrix whose elements are all zero.

We can also rewrite the above equation using the half matrices:

:

\begin{pmatrix}

A & B \\

C & D

\end{pmatrix}

=

\begin{pmatrix}

A^{\frac{1}{2}} \\

C A^{-\frac{*}{2}}

\end{pmatrix}

\begin{pmatrix}

A^{\frac{*}{2}} & A^{-\frac{1}{2}}B

\end{pmatrix}

+

\begin{pmatrix}

0 & 0 \\

0 & Q^{\frac{1}{2}}

\end{pmatrix}

\begin{pmatrix}

0 & 0 \\

0 & Q^{\frac{*}{2}}

\end{pmatrix}

,

where the Schur complement of \begin{matrix}A\end{matrix}

in the block matrix is defined by

:

\begin{matrix}

Q = D - C A^{-1} B

\end{matrix}

and the half matrices can be calculated by means of Cholesky decomposition or LDL decomposition.

The half matrices satisfy that

:

\begin{matrix}

A^{\frac{1}{2}}\,A^{\frac{*}{2}}=A;

\end{matrix}

\qquad

\begin{matrix}

A^{\frac{1}{2}}\,A^{-\frac{1}{2}}=I;

\end{matrix}

\qquad

\begin{matrix}

A^{-\frac{*}{2}}\,A^{\frac{*}{2}}=I;

\end{matrix}

\qquad

\begin{matrix}

Q^{\frac{1}{2}}\,Q^{\frac{*}{2}}=Q.

\end{matrix}

Thus, we have

:

\begin{pmatrix}

A & B \\

C & D

\end{pmatrix}

=

LU,

where

:

LU =

\begin{pmatrix}

A^{\frac{1}{2}} & 0 \\

C A^{-\frac{*}{2}} & 0

\end{pmatrix}

\begin{pmatrix}

A^{\frac{*}{2}} & A^{-\frac{1}{2}}B \\

0 & 0

\end{pmatrix}

+

\begin{pmatrix}

0 & 0 \\

0 & Q^{\frac{1}{2}}

\end{pmatrix}

\begin{pmatrix}

0 & 0 \\

0 & Q^{\frac{*}{2}}

\end{pmatrix}.

The matrix \begin{matrix}LU\end{matrix} can be decomposed in an algebraic manner into

::L =

\begin{pmatrix}

A^{\frac{1}{2}} & 0 \\

C A^{-\frac{*}{2}} & Q^{\frac{1}{2}}

\end{pmatrix}

\mathrm{~~and~~}

U =

\begin{pmatrix}

A^{\frac{*}{2}} & A^{-\frac{1}{2}}B \\

0 & Q^{\frac{*}{2}}

\end{pmatrix}.

See also

References

{{reflist}}

{{DEFAULTSORT:Block Lu Decomposition}}

Category:Matrix decompositions

Category:Linear algebra