Boas–Buck polynomials

{{one source |date=May 2024}}

{{format footnotes |date=May 2024}}

In mathematics, Boas–Buck polynomials are sequences of polynomials \Phi_n^{(r)}(z) defined from analytic functions B and C by generating functions of the form

:\displaystyle C(zt^r B(t))=\sum_{n\ge0}\Phi_n^{(r)}(z)t^n.

The case r=1, sometimes called generalized Appell polynomials, was studied by {{harvs|txt|last=Boas|authorlink=Ralph P. Boas, Jr.|last2=Buck|author2-link=Robert Creighton Buck|year=1958}}.

References

  • {{Citation | last1=Boas | first1=Ralph P. | last2=Buck | first2=R. Creighton | title=Polynomial expansions of analytic functions | url=https://books.google.com/books?id=eihMuwkh4DsC | publisher=Springer-Verlag | location=Berlin, New York | series=Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. | mr=0094466 | year=1958 | volume=19| isbn=9783540031239 }}

Category:Polynomials

{{polynomial-stub}}