Bogdanov map
{{Short description|Chaotic 2D map related to the Bogdanov–Takens bifurcation}}
In dynamical systems theory, the Bogdanov map is a chaotic 2D map related to the Bogdanov–Takens bifurcation. It is given by the transformation:
:
\begin{cases}
x_{n+1} = x_n + y_{n+1}\\
y_{n+1} = y_n + \epsilon y_n + k x_n (x_n - 1) + \mu x_n y_n
\end{cases}
The Bogdanov map is named after Rifkat Bogdanov.
==See also==
References
- DK Arrowsmith, CM Place, An introduction to dynamical systems, Cambridge University Press, 1990.
- Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
- Bogdanov, R. "Bifurcations of a Limit Cycle for a Family of Vector Fields on the Plane." Selecta Math. Soviet 1, 373–388, 1981.
{{reflist}}
External links
- [http://mathworld.wolfram.com/BogdanovMap.html Bogdanov map] at MathWorld
{{Chaos theory}}
Category:Exactly solvable models
{{fractal-stub}}