Bogomolov–Sommese vanishing theorem

{{Short description|Theorem in algebraic geometry}}

{{distinguish|Le Potier's vanishing theorem}}

In algebraic geometry, the Bogomolov–Sommese vanishing theorem is a result related to the Kodaira–Itaka dimension. It is named after Fedor Bogomolov and Andrew Sommese. Its statement has differing versions:

{{blockquote|Bogomolov–Sommese vanishing theorem for snc pair:{{harv|Michałek|2012}}{{harv|Greb|Kebekus|Kovács|2010}}{{harv|Esnault|Viehweg|1992|loc=Corollary 6.9}}{{harv|Kebekus|2013|loc=Theorem 2.17}} Let X be a projective manifold (smooth projective variety), D a simple normal crossing divisor (snc divisor) and A \subseteq \Omega ^{p} _ {X} (\log D) an invertible subsheaf. Then the Kodaira–Itaka dimension \kappa(A) is not greater than p.

}}

This result is equivalent to the statement that:{{harv|Graf|2015}}

:H^{0}\left(X,A^{- 1} \otimes \Omega ^{p}_{X} (\log D) \right) = 0

for every complex projective snc pair (X, D) and every invertible sheaf A \in \mathrm{Pic}(X)

with \kappa(A) > p.

Therefore, this theorem is called the vanishing theorem.

{{blockquote|Bogomolov–Sommese vanishing theorem for lc pair:{{harv|Greb|Kebekus|Kovács|Peternell|2011|loc=Theorem 7.2}}{{harv|Kebekus|2013|loc=Corollary 4.14 }} Let (X,D) be a log canonical pair, where X is projective. If A \subseteq\Omega ^{[p]}_{X} (\log \lfloor D \rfloor) is a \mathbb{Q}-Cartier reflexive subsheaf of rank one,{{harv|Greb|Kebekus|Kovács|Peternell|2011|loc=Definition 2.20.}} then \kappa(A) \leq p.}}

See also

Notes

References

  • {{cite book |doi=10.1007/978-3-0348-8600-0_7 |chapter-url={{Google books|Nmv0BwAAQBAJ|page=58|plainurl=yes}} |chapter=Differential forms and higher direct images |title=Lectures on Vanishing Theorems |year=1992 |last1=Esnault |first1=Hélène |author-link1=Hélène Esnault |last2=Viehweg |first2=Eckart |pages=54–64 |isbn=978-3-7643-2822-1}}
  • {{cite journal |doi=10.1515/crelle-2013-0031 |title=Bogomolov–Sommese vanishing on log canonical pairs |year=2015 |last1=Graf |first1=Patrick |journal=Journal für die reine und angewandte Mathematik (Crelle's Journal) |volume=2015 |issue=702 |arxiv=1210.0421 |s2cid=119627680}}
  • {{cite journal |doi=10.1112/S0010437X09004321 |title=Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties |year=2010 |last1=Greb |first1=Daniel |last2=Kebekus |first2=Stefan |last3=Kovács |first3=Sándor J. |journal=Compositio Mathematica |volume=146 |pages=193–219 |s2cid=1474399 |arxiv=0808.3647 }}
  • {{cite journal |doi=10.1007/s10240-011-0036-0 |title=Differential forms on log canonical spaces |year=2011 |last1=Greb |first1=Daniel |last2=Kebekus |first2=Stefan |last3=Kovács |first3=Sándor J. |last4=Peternell |first4=Thomas |journal=Publications Mathématiques de l'IHÉS |volume=114 |pages=87–169 |arxiv=1003.2913 |s2cid=115177340 |url=http://www.numdam.org/item/10.1007/s10240-011-0036-0.pdf}}
  • {{cite book |title=Handbook of Moduli II |year=2013 |publisher=International Press of Boston, Inc. |isbn=9781571462589 |series=Advanced Lectures in Mathematics Volume 25 |last1=Kebekus |first1=Stefan |chapter=Differential forms on singular spaces, the minimal model program, and hyperbolicity of moduli stacks |arxiv=1107.4239 |pages=71–113}}
  • {{cite book |doi=10.4171/114-1/14 |chapter-url=https://www.impan.pl/~pragacz/kebmich1.pdf |chapter=Notes on Kebekus' lectures on differential forms on singular spaces |title=Contributions to Algebraic Geometry |series=EMS Series of Congress Reports |year=2012 |last1=Michałek |first1=Mateusz |pages=375–388 |isbn=978-3-03719-114-9}}

Further reading

  • {{cite journal |title=Holomorphic Tensors and Vector Bundles on Projective Varieties |year=1979 |last1=Bogomolov |first1=F. A. |journal=Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya |volume=42 |issue=6 |pages=1227–1287 |doi=10.1070/IM1979v013n03ABEH002076 |bibcode=1979IzMat..13..499B |url=https://www.mathnet.ru/php/getFT.phtml?jrnid=im&paperid=1965&what=fullt&option_lang=eng|url-access=subscription }}
  • {{cite journal |url=https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1978.2/ICM1978.2.ocr.pdf|title=Unstable vector bundles and curves on surfaces |journal=Proceedings of the International Congress of Mathematicians. Helsinki, 1978 |year=1980 |pages=517–524 |last1=Bogomolov |first1=Fedor }}
  • {{cite journal |url=https://gallica.bnf.fr/ark:/12148/bpt6k56752189/f132.item|last1=Demailly |first1=Jean-Pierre |title=Une généralisation du théorème d'annulation de Kawamata-Viehweg |journal=C. R. Acad. Sci. Paris Sér. I |pages=123–126 |year=1989|volume=309| mr=1004954}}
  • {{cite journal |url=http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002103303|title=Logarithmic de Rham complexes and vanishing theorems |journal=Inventiones Mathematicae |year=1986 |volume=86 |pages=161–194 |last1=Esnault |first1=H. |last2=Viehweg |first2=E. |doi=10.1007/BF01391499 |bibcode=1986InMat..86..161E |s2cid=123388645 }}
  • {{cite journal |doi=10.1007/s00209-010-0758-6|title=Families over special base manifolds and a conjecture of Campana |year=2011 |last1=Jabbusch |first1=Kelly |last2=Kebekus |first2=Stefan |journal=Mathematische Zeitschrift |volume=269 |issue=3–4 |pages=847–878 |arxiv=0905.1746 |s2cid=17138847 }}
  • {{cite journal |doi=10.1007/s00209-021-02740-8|title=Bogomolov–Sommese type vanishing for globally F-regular threefolds |year=2021 |last1=Kawakami |first1=Tatsuro |journal=Mathematische Zeitschrift |volume=299 |issue=3–4 |pages=1821–1835 |arxiv=1911.08240 |s2cid=215768942 }}
  • {{cite journal |doi=10.1016/j.aim.2022.108640|title=Bogomolov-Sommese vanishing and liftability for surface pairs in positive characteristic |year=2022 |last1=Kawakami |first1=Tatsuro |journal=Advances in Mathematics |volume=409 |page=108640 |arxiv=2108.03768 |s2cid=236956885 }}
  • {{cite book |last1=Müller-Stach |first1=Stefan J. |title=Global Aspects of Complex Geometry |pages=451–469|doi=10.1007/3-540-35480-8_12|chapter=Hodge Theory and Algebraic Cycles|chapter-url={{Google books|d_0ob8js1O8C|pg=466|plainurl=yes}}}}
  • {{cite journal |doi=10.1007/s00209-023-03252-3|title=Bogomolov–Sommese type vanishing theorem for holomorphic vector bundles equipped with positive singular Hermitian metrics |year=2023 |last1=Watanabe |first1=Yuta |journal=Mathematische Zeitschrift |volume=303 |issue=4 |s2cid=246823913 |arxiv=2202.06603 }}
  • {{cite journal |url=http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002199688 |title=Vanishing theorems |journal=Journal für die Reine und Angewandte Mathematik |year=1982 |volume=335 |pages=1–8 |last1=Viehweg |first1=Eckart |doi=10.1515/crll.1982.335.1}}

{{DEFAULTSORT:Bogomolov-Sommese vanishing theorem}}

Category:Theorems in algebraic geometry

Category:Theorems in complex geometry